Geometry of rank 2 distributions via abnormal extremals: generalized Wilczynski invariants

Igor Zelenko

Texas A&M University, USA

Grieg seminar, talk 1 June 1, 2021

Vector distributions: weak derived flag

Let *D* be a rank ℓ distribution on an *n* dimensional manifold *M* or shortly (ℓ, n) -distribution.

The natural filtration of *TM*, the weak derived flag:

 $D = D^1 \subset D^2 \subset \ldots D^j \subset \cdots \subset TM$:

 $D^1(q) := D(q) = \langle X_1(q), \ldots, X_l(q) \rangle,$

 $D^2(q) := D(q) + [D, D](q) = \langle \{X_i(q), [X_i, X_k](q) : 1 \le i < k \le \ell \} \rangle,$

and recursively

$$D^{j}(q) = D^{j-1}(q) + [D, D^{j-1}](q) =$$

= span {all iterated Lie brackets of length $\leq j$ of the fields X_j at q}.

 D^{j} is called the *jth power of the distributions* D

The filtration $D(q) = D^1(q) \subset D^2(q) \subset \dots D^j(q), \dots$ of the tangent bundle $T_q M$ is called a *weak derived flag*

The tuple $(\dim D(q), \dim D^2(q), \dots, \dim D^j(q), \dots)$ is called the *small growth vector of D at the point q* (or, shortly, s.g.v.).

Main approaches to the equivalence problem

- The Cartan equivalence method.
- The Tanaka Prolongation procedure -the algebraic version of the Cartan equivalence method (Tanaka 1970, Morimoto 1993) working especially well in parabolic geometries (Tanaka 1979, Čap-Schichl (2000), Čap-Slovak), as was discussed in Dennis The lecture series.
- The method of normal forms (Poincare-Dulac for vector fields, Moser for stable distribution and nondegenerate CR structures (and many others for CR structures), Misha Zhitomirskii for distributions), as was discussed in Misha Zhitomirskii lecture series.
- The symplecitification procedure via abnormal extremals and Jacobi curves (A. Agrachev, I.Z, and B. Doubrov) originated from the ideas of optimal control theory.

Preliminaries on cotangent bundle: the tautological Liouville 1-form and the canonical symplectic structure

The tautological Liouville 1-form s on T^*M is $s(\lambda)(v) := p(\pi_*v)$ The canonical symplectic form on T^*M is $\sigma := d s$. In local (canonical) coordinates $s = p_i dq^i$ and $\sigma = dp_i \wedge dq^i$

The projectivized cotangent bundle

Let $\mathbb{P}T^*M$ be the projectivized cotangent bundle: the fibers are the projectivizations of the fibers of T^*M .

The tautological 1-form s induces the canonical contact distribution Δ on $\mathbb{P}T^*M$ as a pushforward of the distribution annihilating s by the projection from T^*M to $\mathbb{P}T^*M$: T^*M ker s $\widetilde{\Delta} = \prod_{*} \ker s$ $\mathbb{P}T^*M$

Annihilators of powers of distributions and structures on them

Dual objects to the powers of distributions on T^*M and $\mathbb{P}T^*M$:

 $(D^j)^{\perp} = \{(p,q) \in T^*M : p(v) = 0 \quad \forall v \in D^j(q)\}$ - the annihilator of D^j

 $\mathbb{P}(D^{j})^{\perp}$ is the projectivization of $(D^{j})^{\perp}$.

Consider the case of rank 2 distributions with dim $D^2 = 3$.

Note that dim $\mathbb{P}(D^2)^{\perp} = 2n - \dim D^2 - 1 = 2n - 4$ ($\Rightarrow \dim \mathbb{P}(D^2)^{\perp}$ it is even).

Restrict the canonical contact distribution $\widetilde{\Delta}$ from $\mathbb{P}T^*M$ to $\mathbb{P}(D^2)^{\perp}$: $\overline{\Delta} := \widetilde{\Delta} \cap T\mathbb{P}(D^2)^{\perp}$

The distribution $\overline{\Delta}$ is even contact on $\mathbb{P}(D^2)^{\perp} \setminus \mathbb{P}(D^3)^{\perp}$, i.e if \tilde{s} is a defining 1-form of $\overline{\Delta}$, $\overline{\Delta} = \ker \tilde{s}$, then on $\mathbb{P}(D^2)^{\perp} \setminus \mathbb{P}(D^3)^{\perp}$

 $\dim \ker(d\tilde{s}|_{\bar{\Delta}}) = 1.$

Characteristic foliation (by abnormal extremals)

 $C := \ker(d\tilde{s}|_{\bar{\Delta}})$ is the the *characteristic rank* 1 *distribution* on $W_D = \mathbb{P}(D^2)^{\perp} \setminus \mathbb{P}(D^3)^{\perp}$.

The integral curves of this characteristic distribution are *(regular)* abnormal extremals of distribution D, defining the *characteristic* 1-*foliation on* W_D .

 $N = W_D/($ the characteristic one-foliation of abnormal extremals)

is locally a well defined smooth (2n - 5)-dimensional manifold, the *leaf space of abnormal extremals*.

Let $\Phi: W_D \to N$ be the canonical projection to the quotient manifold.

The leaf space *N* is endowed with the contact distribution $\Delta := \Phi_* \overline{\Delta}$, , rank $\Delta = 2n - 6$, Δ is endowed with the conformal symplectic structure.

Rank 2 distribution of maximal class and curve in projective spaces

Let $\widehat{D} := \pi^* D$, be the distribution on W_D induced by π : $\widehat{D}(\lambda) = \{ v \in T_\lambda W_D : \pi_* v \in D(\pi(\lambda)) \}$

 $orall \lambda \in \gamma \quad J_\gamma(\lambda) := \Phi_*(\widehat{D}(\lambda)) \subset \Delta(\gamma)$

 J_{γ} is an (unparametrized) curve of (Langrangian) subspaces of $\Delta(\gamma) \subset T_{\gamma}N$, called the Jacobi curve of the abnormal extremal γ .

Remark $\forall q \in M$ collecting π_*C along the fiber $\pi^{-1}(q)$ of $\pi : W_D \to M$ we do not get any non-trivial structure on D(q).

Osculating flag of Jacobi curve

The Jacobi curve J_{γ} produces the curve of flags in $\Delta(\gamma)$ via a series of osculations and skew-orthogonal complements: $\dots \subset J_{\gamma}^{(-\nu)} \subset \dots \subset J_{\gamma}^{(0)} = J_{\gamma} \subset J_{\gamma}^{(1)} \subset \dots \subset J_{\gamma}^{(\nu)} \subset \dots \subset \Delta(\gamma)$ Here

1 $J_{\gamma}^{(i)}$ with i > 0 is the *i*-th osculating space defined as follows: Look on $J_{\gamma}(\cdot)$ as a tautological vector bundle over itself with the fiber over the point $J_{\gamma}(t)$ being vector space $J_{\gamma}(t)$. Let $\Gamma(J_{\gamma})$ be the space of sections of this bundle, then $J_{\gamma}^{(i)}(t) = \operatorname{span}\{\frac{d^{j}}{d\tau^{j}}\ell(\tau)|_{\tau=t} : \ell \in \Gamma(J_{\gamma}), 0 \le j \le i\}.$ 2 $J_{\gamma}^{(-i)} := (J_{\gamma}^{(i)})^{\angle}$, the skew-symmetric complement of $J_{\gamma}^{(i)}$. For rank 2 distributions, dim $J_{\gamma}^{(i+1)} - \dim J_{\gamma}^{(i)} \leq 1$. $J_{\gamma}^{(-1)}(\lambda) = \Phi_*(\mathcal{V}(\lambda)), \lambda \in \gamma$, where \mathcal{V} is the distribution tangent to the fibers of the bundle $\pi: W_D \to M$.

Associated curves in projective space and distributions of maximal class

The curve J_{γ} is called regular if the subspaces $J_{\gamma}(\lambda)$ do not belong to a fixed hyperplane of $\Delta(\gamma) \Leftrightarrow$ For generic $\lambda \in \gamma$ the following three mutually equivalent conditions hold (in this case the curve is called convex):

$$J_{\gamma}^{(n-3)}(\lambda) = \Delta(\gamma);$$

2 dim
$$J_{\gamma}^{(l)} = i + n - 3$$
 for $3 - n \le i \le n - 3$;

3 dim J⁽⁴⁻ⁿ⁾_γ = 1, i.e. near λ, λ̄ → J⁽⁴⁻ⁿ⁾_γ(λ̄), λ̄ ∈ γ, is the curve in the projective space PΔ(γ) (moreover, it is the self-dual curve in the projective space)

Let $\mathcal{R}_D \subset W_D$, the Jacobi regularity locus of D, be the set of $\lambda \in W_D$ such that the germ of $J_{\gamma}(\lambda)$ at λ is convex, where γ is the abnormal extremal passing through λ .

The rank 2 distribution *D* is of maximal class at the point *q* if $\mathcal{R}_D \cap \pi^{-1}(q)$ is not empty.

Therefore invariants of (self-dual) curves in projective spaces give invariants of rank 2 distribution of maximal class in

Remarks on distributions of maximal class

- Generic germs of rank 2 distributions are of maximal class.
- No example of rank 2 bracket generating distribution with $\dim D^3 = 5$, which are not of maximal class are known.
- A distribution *D* is of maximal class at a given point, if the flat distribution corresponding to the Tanaka symbol of *D* at *q* is of maximal class.
- With Eric Wendel we have shown that the following 3 classes of bracket generating distributions with dim $D^3 = 5$ are of maximal class:
 - (1) degree of nonholonomy \leq 4;
 - (2, 14)-distribution with free small growth vector (2, 3, 5, 8, 14);

³ if a distribution is associated with a Monge equation $y^{(m)} = F(x, y, y', ..., y^{(m-1)}, z, z', ..., z^{(k)}), m + k ≥ 3, F_{z^{(k)}z^{(k)}} ≠ 0.$

- Canonical projective structure on a curve: i.e. the set of distinguished parametrizations defined up to a Möbius transformation.
- If k is the dimension of the projective space, then for a convex curve in the projective space the set of fundamental invariants consists of k 1 relative invariants W_i of degree i + 2, i = 1,..., k 1, called the Wilczynski invariants. Here W_i is a degree i + 2 homogeneous polynomial on the tangent line at every point of the curve. In the given parametrization t it can be written as W_i(t) = A_i(t) dtⁱ⁺². The function A_i(t) is called the density of the Wilczynski invariant w.r.t. the parameter t.
- The curve in a projective space is self-dual if and only if all Wilczynski invariants of odd degree are equal to zero.

Canonical section of parametrized curve

- First assume that the curve *J* in a *k* dimensional projective space $\mathbb{P}V$ of a vector space *V* is parametrized somehow: $t \mapsto J(t)$.
- Let $t \mapsto E(t)$ be a section of J (considered as the tautological bundle over itself).

The convexity assumption is that $E(t), E'(t), \ldots, E^{(k)}(t)$ constitute a basis of *V*.

Among all sections of *J* (the freedom is $E(t) \mapsto \lambda(t)E(t)$ for a nonzero scalar function $\lambda(t)$) there is the unique section, up to a multiplication by a constant, such that

$$\frac{d^{k+1}}{dt^{k+1}}\boldsymbol{E}(t) = \sum_{i=0}^{k-1} \boldsymbol{B}_i(t) \frac{d^i}{dt^i} \boldsymbol{E}(t),$$

called the canonical section of *J* (i.e. $B_k \equiv 0$) w.r.t. to the chosen parametrization. Explanation: $B_k \rightarrow B_k + (k+1)\frac{\lambda'}{\lambda} \Rightarrow B_k \rightarrow 0 \Leftrightarrow \lambda' = -\frac{1}{k+1}B_k\lambda$.

Canonical projective structure (continued)

Among all parametrizations of *J* there are parametrizations such that (for their canonical sections):

$$\frac{d^{k+1}}{dt^{k+1}}E(t) = \sum_{i=0}^{k-2} B_i(t) \frac{d^i}{dt^i} E(t),$$

i.e. $B_k = B_{k-1} = 0$ -the Laguerre -Forsyth canonical form.

Such parametrizations are defined up to a Möbius transformation and called *projective parameters*. The collection of them define the *canonical projective structure on the curve J*.

Explanation: Under reparametrization $\tau = \varphi(t)$, $B_{k-1}(t) \rightarrow (B_{k-1} + c_k \mathbb{S}(\varphi t)) \left(\frac{dt}{d\tau}\right)^2$, where $\mathbb{S}(\varphi) := \frac{\varphi^{(3)}}{\phi'} - \frac{3}{2} \left(\frac{\varphi''}{\phi'}\right)^2$ is the Schwarzian derivative of φ and $c_k = \frac{k+1)(k+2)}{12} \Rightarrow$ $B_{k-1} \rightarrow 0 \Leftrightarrow \mathbb{S}(\varphi) = -(c_k)^{-1} B_{k-1}$.

The Wilczynski invariants

Now assume that t is a projective parameter on J.

$$\frac{d^{k+1}}{dt^{k+1}}E(t) = \sum_{i=0}^{k-2} B_i(t) \frac{d^i}{dt^i} E(t),$$
(1)

Then the form $W_1 = B_{k-2}(dt)^3$ is independent of the choice of the projective parameter-the *Wilczynski invariant of degree* 3, i.e if τ is is another projective parameter and the coefficient $\widetilde{B}_{k-1}(\tau)$ is as in the decomposition (1), then $\widetilde{B}_{k-2}(d\tau)^3 = B_{k-2}(dt)^3$.

More generally, the degree i + 2 relative invariant

$$\mathcal{W}_{i}(t) \stackrel{\text{def}}{=} \frac{(i+1)!}{(2i+2)!} \left(\sum_{j=1}^{i} \frac{(-1)^{j-1}(2i-j+3)!(k-i+j-2)!}{(i+2-j)!(j-1)!} B_{k-2-i+j}^{(j-1)}(t) \right) (dt)^{i+2}$$

on *J* does not depend of the choice of the projective parameter-the *i*th Wilczynski invariant, $1 \le i \le k - 1$. (an alternative description using \mathfrak{sl}_2 -representations -Y. Se-Ashi (1988), B. Doubrov (2007)) Given a convex curve J in $\mathbb{P}V$ the dual curve J^* in $\mathbb{P}V^*$ consist of lines in $\mathbb{P}V^*$ annihilating the hyperplanes $J^{(k-1)}$ obtained from J by the osculation of order k - 1. The curve J is called *self-dual* if it is equivalent to its dual, i.e.

there is a linear transformation $A: V \mapsto V^*$ sending J onto J^* .

If k = 2m - 1 then *J* is self-dual if an only if there exists a symplectic form ω on *V* such that the curve $J^{(m-1)}$ of (m-1)st osculating subspaces of *J* is Lagrangian w.r.t. ω .

Theorem (Wilczynski, 1905) The curve is self-dual if and only if all Wilczynski invariants of odd degree vanish.

In particular, the first nontrivial Wilczynski invariant is of degree 4: $W_2 = B_{k-3}(t)dt^4$.

For Jacobi curves of (2, 5)-distributions k = 3 and W_2 is the only nontrivial Wilczynski invariant.

From curves in projective spaces back to distributions: Hamiltonian formalism

On the level of distribution: Let $D = \operatorname{span}\{X_1, X_2\}$ -local basis

$$X_3 := [X_1, X_2], \quad X_4 := [X_1, X_3], \quad X_5 := [X_2, X_3].$$

• Let us introduce the "quasi-impulses" of the vector fields X_i , $u_i : T^*M \mapsto \mathbb{R}$, $1 \le i \le 5$.

$$u_i(\lambda) := p \cdot X_i(q), \ \lambda = (p,q), \ q \in M, \ p \in T_q^*M.$$

Then $(D^2)^{\perp} = \{\lambda \in T^*M : u_1(\lambda) = u_2(\lambda) = u_3(\lambda) = 0\}.$

To any function *H* : *T***M* → ℝ corresponds the *Hamiltonian* vector field *H* defined by the relation

$$i_{\overrightarrow{H}}\sigma = -dH$$

Then the characteristic rank 1 distribution C on W_D satisfies $C = \langle u_4 \vec{u}_2 - u_5 \vec{u}_1 \rangle$.

Density with respect to local basis

Let
$$\vec{h}_{X_1,X_2} := u_4 \overrightarrow{u}_2 - u_5 \overrightarrow{u}_1$$
.

Let $\mathcal{R}_D \subset W_D$ be the Jacobi regularity locus of D, i.e. the set of $\lambda \in W_D$ such that the germ of $J_{\gamma}(\lambda)$ at λ is convex, where γ is the abnormal extremal passing through λ .

For any $\lambda \in \mathcal{R}_D$, let $\mathcal{W}_{2i}^{\lambda}$ be the 2*i*th Wilczynski invariants of the Jacobi curve J_{γ} at λ , $1 \le i \le n - 4$.

 W_{2i}^{λ} is a degree 2(*i* + 1) homogeneous function on the tangent line to γ at λ .

To any (local) basis (X_1, X_2) of *D* we assign the following real-valued function on \mathcal{R}_D

$$\boldsymbol{A}_{i}^{\boldsymbol{X}_{1},\boldsymbol{X}_{2}}(\boldsymbol{\lambda}) := \mathcal{W}_{2i}^{\boldsymbol{\lambda}}\big(\vec{\boldsymbol{h}}_{\boldsymbol{X}_{1},\boldsymbol{X}_{2}}(\boldsymbol{\lambda})\big).$$

If $t \mapsto J_{\gamma}(e^{t\vec{h}_{X_1,X_2}}\lambda)$ is a parametrization of J_{γ} , then $A_i^{X_1,X_2}(\lambda)$ is the density of the *i*th Wilcynski invariant of this curve w.r.t. the parametrization *t* at t = 0.

The effect of a basis change and generalized Wilczynski invariants of rank 2 distributions

If $(\widetilde{X}_1, \widetilde{X}_2)$ is another basis of the distribution *D*, $(\widetilde{X}_1, \widetilde{X}_2) = (X_1, X_2)U, U \in GL_2(\mathbb{R})$, then

 $\vec{h}_{\tilde{X}_1,\tilde{X}_2}(\lambda) = \det U(\pi(\lambda))^2(\pi(\lambda))\vec{h}_{X_1,X_2}(\lambda)$ $\Downarrow \text{ homogeneity of } \mathcal{W}_{2i}$

$$A_i^{\widetilde{X}_1,\widetilde{X}_2}(\lambda) = \det U(\pi(\lambda))^{4(i+1)} A_i^{X_1,X_2}(\lambda)$$
(2)

i.e., the restriction $A_i^{X_1,X_2}$ to $\mathcal{R}_D(q) := \mathcal{R}_D \cap \pi^{-1}(q)$ is the well defined function, up to the multiplication on a positive constant, the *i*th generalized Wilczynski of *D* In the sequel we will use $\vec{h} := \vec{h}_{X_1,X_2}$, $A_i := A_i^{X_1,X_2}$. $A_i|_{\mathcal{R}_D(q)}$ is a degree 2(i + 1) homogeneous rational function on $(D^2)^{\perp}(q)$.

Tangential generalized Wilczynski invariant of (2,3,5)-distribution and the Cartan quartic.

- $\mathcal{R}_D = W_D (= \mathbb{P}(D^2)^{\perp}, \text{ as } \mathbb{P}(D^3)^{\perp} = \emptyset)$, i.e. all Jacobi curves are convex;
- $\forall v \in D(q)$ there exist a unique $\lambda \in \mathbb{P}(D^2)^{\perp} \cap \pi^{-1}(q)$ and the unique $\hat{v} \in \mathcal{C}(\lambda)$ such that $\pi_* \hat{v} = v$

 The map v → W₂^λ(v) is well defined degree 4 homogeneous function on D(q), called the tangential generalize Wilczynski invariant of (2,5) distribution, and denoted by W₂.

Theorem

(I. Z.-2006) $W_2 = -$ Cartan's quartic.

How to calculate the Wilczynski invariants?

First, on the level of a curve *J* in Lagrangian Grassmannian LG(V) of a 2*m*-dim. symplectic space (V, ω) (keep in mind that for (2, n)-distributions m = n - 3):

Step 1 Find the osculating flag, in particular, check whether $J^{(1-m)}$ is one-dimensional.

Step 2 Choose some section \widetilde{E} of $J^{(1-m)}$ and a parametrization (not necessary projective) of J (by a parameter t). "Normalize" it to make it canonical w.r.t. to the chosen parameter. In fact, if $\alpha = \left| \omega \left(\widetilde{E}^{(m)}, \widetilde{E}^{(m-1)} \right) \right|$, then

 $E := \alpha^{-1/2} \widetilde{E}$ is a canonical section w.r.t. *t*.

Step 3 Instead of going further with Lagerre-Forsyth normalization to find a projective parameter, use universal polynomial formulas for the densities of Wilczynski invariants in terms of polynomials in the coefficients $\{B_i\}_{i=0}^{2m-2}$ and their derivatives w.r.t. this originally chosen parameter.

Some formula for the first two nontrivial Wilczinski invariants of self-dual curves

If
$$\frac{d^{2m}}{dt^{2m}}E(t) = \sum_{i=0}^{2m-2} B_i(t) \frac{d^i}{dt^i}E(t)$$
, and $W_{2i}(t) = A_i(t)dt^{2(i+1)}$,
then
 $A_1 = (2m-2)! \left(\frac{1}{(2m-2)(2m-3)}B_{2m-4} + \frac{(10m+7)}{20(4m^2-1)m}B_{2m-2}^2 - \frac{3}{20}B_{2m-2}''\right)$.

In particular:

• m = 2 (the case of (2,5) distributions) $A_1 = B_0 + \frac{9}{100}(B_2)^2 - \frac{3}{10}B_2''$

• m = 3 (the case of (2,6) distributions) $A_1 = 2 \left(B_2 + \frac{37}{175} (B_4)^2 - \frac{9}{5} B_4'' \right)$

If m = 3 $A_2 = B_0 + \frac{1}{441} B_2 B_4 + \frac{178}{15435} (B_4)^3 - \frac{5}{18} B_2'' - \frac{5}{441} (B_4')^2 - \frac{59}{441} B_4 B_4'' + \frac{37}{7} B_4^{(4)}$

On the level of a (2, n)-distribution D: Choose a local basis (X_1, X_2) of *D* again and let $\vec{h} = u_4 \vec{u}_2 - u_5 \vec{u}_1$. \vec{h} defines the parametrization on any abnormal extremal γ and therefore on the Jacobi curve J_{γ} . The operation $\frac{d}{dt}$ on sections of J translates to the operation ad \vec{h} on appropriate vector fields on $\mathbb{P}(D^2)^{\perp}$ (or $(D^2)^{\perp}$). Step 1 For every $\lambda \in (D^2)^{\perp}$ find the osculating flag of J_{γ} at λ , in particular, check whether $J^{(4-n)}$ is one-dimensional (in this way you also find the Jacobi regularity set \mathcal{R}_{D}). Step 2 Choose some section $\widetilde{\mathcal{E}}$ of the line distribution $J^{(4-n)}$. "Normalize" it to make it canonical w.r.t. to the parametrization given by \vec{h} : if $\alpha = \left| \sigma \left((\operatorname{ad} \vec{h})^m \widetilde{\mathcal{E}}, (\operatorname{ad} \vec{h})^{m-1} \widetilde{\mathcal{E}} \right) \right|$, then $\mathcal{E} := \alpha^{-1/2} \widetilde{\mathcal{E}}(t)$ is a canonical section $J^{(4-n)}$ w.r.t. the parametrization by h Step 3 Find the decomposition of $(ad \vec{h})^{2m} \mathcal{E}$ in the linear combination w.r.t. $\{(ad \vec{h})^i \mathcal{E}\}_{i=0}^{2m-2}$ and use the universal polynomial formulas for the density of Wilczynski invariants in terms of universal polynomials in these coefficients and their directional derivative w.r.t. \dot{h} .

25/31

Suppose the canonical section \mathcal{E} w.r.t. the parametrization by \vec{h} is found, m := n - 3, and

$$(\mathrm{ad}\vec{h})^{2m}\mathcal{E} = \sum_{i=0}^{2m-2} \mathcal{B}_i(\mathrm{ad}\vec{h})^i\mathcal{E} \mod (\vec{h}, \mathrm{Euler \ field})$$

Then the first generalized Wilczynski invariant is given by $A_1 = (2m-2)! \left(\frac{1}{(2m-2)(2m-3)} \mathcal{B}_{2m-4} + \frac{(10m+7)}{20(4m^2-1)m} \mathcal{B}_{2m-2}^2 - \frac{3}{20} (\operatorname{ad} \vec{h})^2 (\mathcal{B}_{2m-2}) \right).$ In particular:

•
$$m = 2$$
 (the case of (2,5) distributions)
 $A_1 = \mathcal{B}_0 + \frac{9}{100}(\mathcal{B}_2)^2 - \frac{3}{10}(\operatorname{ad} \vec{h})^2 \mathcal{B}_2(t)$
• $m = 3$ (the case of (2,6) distributions)
 $A_1 = 2\left(\mathcal{B}_2 + \frac{37}{175}(\mathcal{B}_4)^2 - \frac{9}{5}(\operatorname{ad} \vec{h})^2 \mathcal{B}_4\right)$
 $A_2 :=$ the last formula on slide 24 with $\frac{d}{dt}$ replaced by ad \vec{h}_2

The natural (and widely open) questions are:

- How to describe the singularities of the vector field \mathcal{E} , or equivalently the set $S_D = W_D \setminus \mathcal{R}_D$, Jacobi singularity locus?
- how does this set depend on the Tanaka symbol of the distribution?
- What is the algebraic structure of generalized Wilczynski invariant and what more simple invariants can be extracted from it?

Discussions on algebraic structure of generalized Wilczynski invariants

For n = 5, $J^{(4-n)} = V$, the tangent to the fibers of the bundle $\pi : \mathbb{P}(D^2)^{\perp} \to D$. $S_D = \emptyset$, $\mathcal{E}(\lambda) = \gamma_4(\lambda)\partial_{u_4} + \gamma_5(\lambda)\partial_{u_5}$, where $\gamma_4(\lambda)u_5 - \gamma_5(\lambda)u_4 \equiv 1$ (e.g., $\mathcal{E} = \frac{1}{u_5}\partial_{u_4}$ or $-\frac{1}{u_4}\partial_{u_5}$). Then the only generalized Wilczynski invariant A_1 is a degree 4 polynomial on the fibers and can be computed using the formula in the previous slide.

For n > 5 the Jacobi singularity set S_D is not empty and the generalized Wilczynski invariant are not polynomials for generic distributions (they are homogeneous rational functions). This is the case when (complexified) S_D is not empty and the (complexified) characteristic line distribution *C* is not tangent to the maximal strata of S_D .

The case of (2,6) distribution with s.g.v. (2,3,5,6)

Each fiber of *D* is endowed with a conformal structure given by

 $B(X, Y) := [X, [Z, Y]] \operatorname{mod} D^3, \quad X, Y \in D, Z \in D^2/D$

(note that dim $D^2/D = 1$).

B(X, Y) = B(Y, X) by Jacobi identity.

The Tanaka symbol of D at q is determined by the signature of B and there are exactly three Tanaka symbols: elliptic (B is sign definite), parabolic (B is degenerate, of rank 1), and hyperbolic (B has signature (1, 1)):

One can choose a basis (X_1, \ldots, X_6) in Tanaka symbols such that $\mathfrak{g}^{-1} = \langle X_1, X_2 \rangle$, $X_3 = [X_1, X_2]$, $X_4 = [X_1, X_3]$, $X_5 = [X_2, X_3]$ and the only additional possibly nonzero Lie products of vectors X_1, \ldots, X_6 are

 $[X_1, X_4] = X_6, [X_2, X_5] = \varepsilon X_6, \quad \varepsilon \in \{-1, 0, 1\}$ (3)

Jacobi singularity set for (2,3,5,6) distributions and the case of flat distribution

 $S_D = \{\lambda \in W_D : B(\pi_*C(\lambda), \pi_*(C(\lambda))) = 0\}$, i.e. $C(\lambda)$ is projected to a null line of B. The canonical section of $J^{(4-n)}$ can be taken as

$$\mathcal{E} = \frac{\partial_{u_6}}{B(\pi_* \vec{h}(\lambda), \pi_* \vec{h}(\lambda))}$$

and the generalized Wilczynski invariants A_i with i = 1, 2 are in general homogeneous rational functions of degree 2(i + 1) with denominators being 2(i + 1)st powers of the quadratic polynomial $Q(\lambda) := B\left(\pi_*\vec{h}(\lambda), \pi_*\vec{h}(\lambda)\right)$.

However, if the characteristic distribution *C* is tangent to the level sets of *Q*, then *A*₁ and *A*₂ are polynomials. In particular, for the flat distributions with parabolic Tanaka symbol $A_1 = A_2 = 0$, and with the elliptic or hyperbolic Tanaka symbol $A_1 = \frac{74}{175}u_6^4, \quad A_2 = -\frac{178}{15435}\varepsilon u_6^6, \quad \varepsilon = \pm 1.$

THANK YOU FOR YOUR ATTENTION