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Vector distributions: weak derived flag

Let D be a rank ` distribution on an n dimensional manifold M
or shortly (`,n)-distribution.

The natural filtration of TM, the weak derived flag:

D = D1 ⊂ D2 ⊂ . . .Dj ⊂ · · · ⊂ TM :

D1(q) := D(q) = 〈X1(q), . . . ,Xl(q)〉,

D2(q) := D(q)+[D,D](q) = 〈{Xi(q), [Xi ,Xk ](q) : 1 ≤ i < k ≤ `}〉,

and recursively

Dj(q) = Dj−1(q) + [D,Dj−1](q) =

= span {all iterated Lie brackets of length ≤ j of the fields Xiat q} .
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Weak derived flag and small growth vector (continued)

Dj is called the j th power of the distributions D

The filtration D(q) = D1(q) ⊂ D2(q) ⊂ . . .Dj(q), . . . of the
tangent bundle TqM is called a weak derived flag

The tuple (dim D(q), dim D2(q), . . . , dim Dj(q), . . .) is called the
small growth vector of D at the point q (or, shortly, s.g.v.).
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Main approaches to the equivalence problem

1 The Cartan equivalence method.
2 The Tanaka Prolongation procedure -the algebraic version

of the Cartan equivalence method (Tanaka 1970, Morimoto
1993) working especially well in parabolic geometries
(Tanaka 1979, Čap-Schichl (2000), Čap-Slovak), as was
discussed in Dennis The lecture series.

3 The method of normal forms (Poincare-Dulac for vector
fields, Moser for stable distribution and nondegenerate CR
structures (and many others for CR structures),Misha
Zhitomirskii for distributions), as was discussd in Misha
Zhitomirskii lecture series.

4 The symplecitification procedure via abnormal extremals
and Jacobi curves (A. Agrachev, I.Z, and B. Doubrov)
originated from the ideas of optimal control theory.
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Preliminaries on cotangent bundle: the tautological
Liouville 1-form and the canonical symplectic structure

Let T ∗M = {(p,q) : q ∈ M,p ∈ T ∗q M} be the cotangent bundle,
π : T ∗M → M be the canonical projection.

The tautological Liouville 1-form s on T ∗M is s(λ)(v) := p
(
π∗v

)
The canonical symplectic form on T ∗M is σ := d s.
In local (canonical) coordinates s = pidqi and σ = dpi ∧ dqi
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The projectivized cotangent bundle

Let PT ∗M be the projectivized cotangent bundle: the fibers are
the projectivizations of the fibers of T ∗M.

The tautological 1-form s induces the canonical contact
distribution ∆̃ on PT ∗M as a pushforward of the distribution
annihilating s by the projection from T ∗M to PT ∗M:
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Annihilators of powers of distributions and structures
on them

Dual objects to the powers of distributions on T ∗M and PT ∗M:

(Dj)⊥ = {(p,q) ∈ T ∗M : p(v) = 0 ∀v ∈ Dj(q)} - the
annihilator of Dj

P(Dj)⊥ is the projectivization of (Dj)⊥.

Consider the case of rank 2 distributions with dim D2 = 3.

Note that dimP(D2)⊥ = 2n − dim D2 − 1 = 2n − 4
(⇒ dimP(D2)⊥ it is even).

Restrict the canonical contact distribution ∆̃ from PT ∗M to
P(D2)⊥: ∆̄ := ∆̃ ∩ TP(D2)⊥

The distribution ∆̄ is even contact on P(D2)⊥\P(D3)⊥, i.e if s̃ is
a defining 1-form of ∆̄, ∆̄ = ker s̃, then on P(D2)⊥\P(D3)⊥

dim ker(ds̃|∆̄) = 1.
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Characteristic foliation (by abnormal extremals)

C := ker(ds̃|∆̄) is the the characteristic rank 1 distribution on
WD = P(D2)⊥\P(D3)⊥.

The integral curves of this characteristic distribution are
(regular) abnormal extremals of distribution D, defining the
characteristic 1-foliation onWD.
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Leaf space of abnormal extremals and the double
fibration

N = WD/(the charactrestic one-foliation of abnormal extremals)

is locally a well defined smooth (2n − 5)-dimensional manifold,
the leaf space of abnormal extremals.
Let Φ : WD → N be the canonical projection to the quotient
manifold.
The leaf space N is endowed with the contact distribution
∆ := Φ∗∆̄, , rank∆ = 2n − 6, ∆ is endowed with the conformal
symplectic structure.

WD ⊂ PT ∗M

(N,∆)(M,D)

Φπ
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Rank 2 distribution of maximal class and curve in
projective spaces

Let D̂ := π∗D, be the distribution on WD induced by π:
D̂(λ) = {v ∈ TλWD : π∗v ∈ D(π(λ))}

∀λ ∈ γ Jγ(λ) := Φ∗(D̂(λ)) ⊂ ∆(γ)
Jγ is an (unparametrized) curve of (Langrangian) subspaces of
∆(γ) ⊂ TγN, called the Jacobi curve of the abnormal extremal
γ.

Remark ∀q ∈ M collecting π∗C along the fiber π−1(q) of
π : WD → M we do not get any non-trivial structure on D(q).
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Osculating flag of Jacobi curve

The Jacobi curve Jγ produces the curve of flags in ∆(γ) via a
series of osculations and skew-orthogonal complements:
· · · ⊂ J(−ν)

γ ⊂ · · · ⊂ J(0)
γ = Jγ ⊂ J(1)

γ ⊂ · · · ⊂ J(ν)
γ ⊂ · · · ⊂ ∆(γ)

Here
1 J(i)

γ with i ≥ 0 is the i-th osculating space defined as
follows: Look on Jγ(·) as a tautological vector bundle over
itself with the fiber over the point Jγ(t) being vector space
Jγ(t). Let Γ(Jγ) be the space of sections of this bundle,
then J(i)

γ (t) = span{ d j

dτ j `(τ)|τ=t : ` ∈ Γ(Jγ),0 ≤ j ≤ i}.

2 J(−i)
γ :=

(
J(i)
γ

)∠
, the skew-symmetric complement of J(i)

γ .

For rank 2 distributions, dim J(i+1)
γ − dim J(i)

γ ≤ 1.
J(−1)
γ (λ) = Φ∗(V(λ)), λ ∈ γ, where V is the distribution tangent

to the fibers of the bundle π : WD → M.
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Associated curves in projective space and
distributions of maximal class

The curve Jγ is called regular if the subspaces Jγ(λ) do not
belong to a fixed hyperplane of ∆(γ)⇔ For generic λ ∈ γ the
following three mutually equivalent conditions hold (in this case
the curve is called convex):

1 J(n−3)
γ (λ) = ∆(γ);

2 dim J(i)
γ = i + n − 3 for 3− n ≤ i ≤ n − 3;

3 dim J(4−n)
γ = 1, i.e. near λ, λ̄ 7→ J(4−n)

γ (λ̄), λ̄ ∈ γ, is the
curve in the projective space P∆(γ) (moreover, it is the
self-dual curve in the projective space)

Let RD ⊂WD, the Jacobi regularity locus of D, be the set of
λ ∈WD such that the germ of Jγ(λ) at λ is convex, where γ is
the abnormal extremal passing through λ.
The rank 2 distribution D is of maximal class at the point q if
RD ∩ π−1(q) is not empty.
Therefore invariants of (self-dual) curves in projective spaces
give invariants of rank 2 distribution of maximal class in
arbitrary dimension n ≥ 5.
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Remarks on distributions of maximal class

Generic germs of rank 2 distributions are of maximal class.

No example of rank 2 bracket generating distribution with
dim D3 = 5, which are not of maximal class are known.

A distribution D is of maximal class at a given point , if the
flat distribution corresponding to the Tanaka symbol of D at
q is of maximal class.

With Eric Wendel we have shown that the following 3
classes of bracket generating distributions with dim D3 = 5
are of maximal class:

1 degree of nonholonomy ≤ 4;
2 (2,14)-distribution with free small growth vector

(2,3,5,8,14);
3 if a distribution is associated with a Monge equation

y (m) = F (x , y , y ′, . . . , y (m−1), z, z ′, . . . , z(k)), m + k ≥ 3,
Fz(k)z(k) 6= 0.
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Geometry of curves in projective space: main points

1 Canonical projective structure on a curve: i.e. the set of
distinguished parametrizations defined up to a Möbius
transformation.

2 If k is the dimension of the projective space, then for a
convex curve in the projective space the set of fundamental
invariants consists of k − 1 relative invariantsWi of degree
i + 2, i = 1, . . . , k − 1, called the Wilczynski invariants.
HereWi is a degree i + 2 homogeneous polynomial on the
tangent line at every point of the curve. In the given
parametrization t it can be written asWi(t) = Ai(t) dt i+2.
The function Ai(t) is called the density of the Wilczynski
invariant w.r.t. the parameter t .

3 The curve in a projective space is self-dual if and only if all
Wilczynski invariants of odd degree are equal to zero.
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Canonical section of parametrized curve

First assume that the curve J in a k dimensional projective
space PV of a vector space V is parametrized somehow:
t 7→ J(t).
Let t 7→ E(t) be a section of J (considered as the tautological
bundle over itself).
The convexity assumption is that E(t),E ′(t), . . . ,E (k)(t)
constitute a basis of V .
Among all sections of J (the freedom is E(t) 7→ λ(t)E(t) for a
nonzero scalar function λ(t)) there is the unique section, up to
a multiplication by a constant, such that

dk+1

dtk+1 E(t) =
k−1∑
i=0

Bi(t)
d i

dt i E(t),

called the canonical section of J (i.e. Bk ≡ 0) w.r.t. to the
chosen parametrization.
Explanation: Bk → Bk + (k + 1)λ

′

λ
⇒ Bk → 0⇔ λ′ = − 1

k+1 Bkλ.
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Canonical projective structure (continued)

Among all parametrizations of J there are parametrizations
such that (for their canonical sections):

dk+1

dtk+1 E(t) =
k−2∑
i=0

Bi(t)
d i

dt i E(t),

i.e. Bk = Bk−1 = 0 -the Laguerre -Forsyth canonical form.

Such parametrizations are defined up to a Möbius
transformation and called projective parameters.
The collection of them define the canonical projective structure
on the curve J.

Explanation: Under reparametrization τ = ϕ(t),

Bk−1(t)→ (Bk−1 + ckS(ϕt))
( dt

dτ

)2, where S(ϕ) := ϕ(3)

φ′ − 3
2

(
ϕ′′

φ′

)2
is the

Schwarzian derivative of ϕ and ck = k+1)(k+2)
12 ⇒

Bk−1 → 0⇔ S(ϕ) = −(ck )
−1Bk−1.
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The Wilczynski invariants

Now assume that t is a projective parameter on J.

dk+1

dtk+1 E(t) =
k−2∑
i=0

Bi(t)
d i

dt i E(t), (1)

Then the formW1 = Bk−2(dt)3 is independent of the choice of
the projective parameter-the Wilczynski invariant of degree 3,
i.e if τ is is another projective parameter and the coefficient
B̃k−1(τ) is as in the decomposition (1) , then

B̃k−2 (dτ)3 = Bk−2(dt)3.

More generally, the degree i + 2 relative invariant

Wi(t)
def
=

(i + 1)!
(2i + 2)!

 i∑
j=1

(−1)j−1(2i − j + 3)!(k − i + j − 2)!
(i + 2− j)!(j − 1)!

B(j−1)
k−2−i+j(t)

 (dt)i+2

on J does not depend of the choice of the projective
parameter-the i th Wilczynski invariant, 1 ≤ i ≤ k − 1. (an
alternative description using sl2-representations -Y. Se-Ashi (1988) , B.
Doubrov (2007)) 17 / 31



Wilczynski invariants of self-dual curves

Given a convex curve J in PV the dual curve J∗ in PV ∗ consist
of lines in PV ∗ annihilating the hyperplanes J(k−1) obtained
from J by the osculation of order k − 1.
The curve J is called self-dual if it is equivalent to its dual, i.e.
there is a linear transformation A : V 7→ V ∗ sending J onto J∗.

If k = 2m − 1 then J is self-dual if an only if there exists a
symplectic form ω on V such that the curve J(m−1) of (m − 1)st
osculating subspaces of J is Lagrangian w.r.t. ω.

Theorem (Wilczynski, 1905) The curve is self-dual if and only
if all Wilczynski invariants of odd degree vanish.

In particular, the first nontrivial Wilczynski invariant is of degree
4: W2 = Bk−3(t)dt4.

For Jacobi curves of (2,5)-distributions k = 3 andW2 is the
only nontrivial Wilczynski invariant.
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From curves in projective spaces back to distributions:
Hamiltonian formalism

On the level of distribution: Let D = span{X1,X2}-local basis

X3 := [X1,X2], X4 := [X1,X3], X5 := [X2,X3].

Let us introduce the “quasi-impulses” of the vector fields
Xi , ui : T ∗M 7→ R, 1 ≤ i ≤ 5.

ui(λ) := p · Xi(q), λ = (p,q), q ∈ M, p ∈ T ∗q M.

Then (D2)⊥ = {λ ∈ T ∗M : u1(λ) = u2(λ) = u3(λ) = 0}.
To any function H : T ∗M 7→ R corresponds the Hamiltonian
vector field

−→
H defined by the relation

i−→
H
σ = −d H

Then the characteristic rank 1 distribution C on WD
satisfies C = 〈u4

−→u 2 − u5
−→u 1〉.
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Density with respect to local basis

Let ~hX1,X2
:= u4

−→u 2 − u5
−→u 1.

Let RD ⊂WD be the Jacobi regularity locus of D , i.e. the set of
λ ∈WD such that the germ of Jγ(λ) at λ is convex, where γ is
the abnormal extremal passing through λ.

For any λ ∈ RD, letWλ
2i be the 2i th Wilczynski invariants of the

Jacobi curve Jγ at λ, 1 ≤ i ≤ n − 4.

Wλ
2i is a degree 2(i + 1) homogeneous function on the tangent

line to γ at λ.
To any (local) basis (X1,X2) of D we assign the following
real-valued function on RD

AX1,X2
i (λ) :=Wλ

2i
(
~hX1,X2

(λ)
)
.

If t 7→ Jγ(et~hX1,X2 λ) is a parametrization of Jγ , then AX1,X2
i (λ) is

the density of the i th Wilcynski invariant of this curve w.r.t. the
parametrization t at t = 0.
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The effect of a basis change and generalized
Wilczynski invariants of rank 2 distributions

If (X̃1, X̃2) is another basis of the distribution D,
(X̃1, X̃2) = (X1,X2)U, U ∈ GL2(R), then

~h
X̃1,X̃2

(λ) = det U
(
π(λ)

)2(
π(λ)

)
~hX1,X2

(λ)

⇓ homogeneity ofW2i

AX̃1,X̃2
i (λ) = det U

(
π(λ)

)4(i+1)AX1,X2
i (λ) (2)

i.e., the restriction AX1,X2
i to RD(q) := RD ∩ π−1(q) is the well

defined function, up to the multiplication on a positive constant,
the i th generalized Wilczynski of D
In the sequel we will use ~h := ~hX1,X2

, Ai := AX1,X2
i .

Ai |RD(q) is a degree 2(i + 1) homogeneous rational function on
(D2)⊥(q).
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Tangential generalized Wilczynski invariant of
(2,3,5)-distribution and the Cartan quartic.

RD = WD (= P(D2)⊥, as P(D3)⊥ = ∅ ), i.e. all Jacobi
curves are convex;
∀v ∈ D(q) there exist a unique λ ∈ P(D2)⊥ ∩ π−1(q) and
the unique v̂ ∈ C(λ) such that π∗v̂ = v

The map v 7→ Wλ
2 (v̂) is well defined degree 4

homogeneous function on D(q), called the tangential
generalize Wilczynski invariant of (2,5) distribution, and
denoted byW2.

Theorem
(I. Z.-2006)W2 = − Cartan’s quartic.
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How to calculate the Wilczynski invariants?

First, on the level of a curve J in Lagrangian Grassmannian
LG(V ) of a 2m-dim. symplectic space (V , ω) (keep in mind that
for (2,n)-distributions m = n − 3):

Step 1 Find the osculating flag, in particular, check whether J(1−m)

is one-dimensional.
Step 2 Choose some section Ẽ of J(1−m) and a parametrization

(not necessary projective) of J (by a parameter t).
“Normalize” it to make it canonical w.r.t. to the chosen
parameter. In fact, if α =

∣∣∣ω (Ẽ (m), Ẽ (m−1)
)∣∣∣, then

E := α−1/2Ẽ is a canonical section w.r.t. t .
Step 3 Instead of going further with Lagerre-Forsyth normalization

to find a projective parameter, use universal polynomial
formulas for the densities of Wilczynski invariants in terms
of polynomials in the coefficients {Bi}2m−2

i=0 and their
derivatives w.r.t. this originally chosen parameter.
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Some formula for the first two nontrivial Wilczinski
invariants of self-dual curves

If
d2m

dt2mE(t) =
∑2m−2

i=0 Bi(t) d i

dt i E(t), and W2i(t) = Ai(t)dt2(i+1),
then
A1 = (2m − 2)!

(
1

(2m−2)(2m−3) B2m−4 + (10m+7)
20(4m2−1)m B2

2m−2 −
3

20 B′′2m−2

)
.

In particular:

m = 2 (the case of (2,5) distributions)
A1 = B0 + 9

100 (B2)2 − 3
10 B′′2

m = 3 (the case of (2,6) distributions)
A1 = 2

(
B2 + 37

175 (B4)2 − 9
5 B′′4

)
If m = 3
A2 = B0 + 1

441 B2B4 + 178
15435 (B4)3− 5

18 B′′2 −
5

441 (B′4)2− 59
441 B4B′′4 + 37

7 B(4)
4
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On the level of a (2,n)-distribution D: Choose a local basis
(X1,X2) of D again and let ~h = u4

−→u 2 − u5
−→u 1.

~h defines the parametrization on any abnormal extremal γ and
therefore on the Jacobi curve Jγ .
The operation d

dt on sections of J translates to the operation
ad~h on appropriate vector fields on P(D2)⊥ (or (D2)⊥).

Step 1 For every λ ∈ (D2)⊥ find the osculating flag of Jγ at λ, in
particular, check whether J(4−n) is one-dimensional (in this
way you also find the Jacobi regularity set RD).

Step 2 Choose some section Ẽ of the line distribution J(4−n).
“Normalize” it to make it canonical w.r.t. to the
parametrization given by ~h: if α =

∣∣∣σ ((ad~h)mẼ , (ad~h)m−1Ẽ
)∣∣∣,

then E := α−1/2Ẽ(t) is a canonical section J(4−n) w.r.t. the
parametrization by ~h

Step 3 Find the decomposition of (ad~h)2mE in the linear
combination w.r.t. {(ad~h)iE}2m−2

i=0 and use the universal
polynomial formulas for the density of Wilczynski invariants
in terms of universal polynomials in these coefficients and
their directional derivative w.r.t. ~h. 25 / 31



Suppose the canonical section E w.r.t. the parametrization by ~h
is found, m := n − 3, and

(ad~h)2mE =
2m−2∑
i=0

Bi(ad~h)iE mod
(
~h,Euler field

)
〉

Then the first generalized Wilczynski invariant is given by
A1 = (2m − 2)!

(
1

(2m−2)(2m−3)
B2m−4 + (10m+7)

20(4m2−1)m
B2

2m−2 −
3
20 (ad~h)2(B2m−2)

)
.

In particular:
m = 2 (the case of (2,5) distributions)

A1 = B0 + 9
100(B2)2 − 3

10(ad~h)2B2(t)
m = 3 (the case of (2,6) distributions)

A1 = 2
(
B2 + 37

175(B4)2 − 9
5(ad~h)2B4

)
A2 := the last formula on slide 24 with d

dt replaced by ad~h.
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The natural (and widely open) questions are:
How to describe the singularities of the vector field E , or
equivalently the set SD = WD\RD, Jacobi singularity
locus?
how does this set depend on the Tanaka symbol of the
distribution?
What is the algebraic structure of generalized Wilczynski
invariant and what more simple invariants can be extracted
from it?
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Discussions on algebraic structure of generalized
Wilczynski invariants

For n = 5, J(4−n) = V, the tangent to the fibers of the bundle
π : P(D2)⊥ → D.
SD = ∅, E(λ) = γ4(λ)∂u4 + γ5(λ)∂u5 , where
γ4(λ)u5 − γ5(λ)u4 ≡ 1 ( e.g., E = 1

u5
∂u4 or − 1

u4
∂u5 ).

Then the only generalized Wilczynski invariant A1 is a degree 4
polynomial on the fibers and can be computed using the
formula in the previous slide.

For n > 5 the Jacobi singularity set SD is not empty and the
generalized Wilczynski invariant are not polynomials for generic
distributions (they are homogeneous rational functions). This is
the case when (complexified) SD is not empty and the
(complexified) characteristic line distribution C is not tangent to
the maximal strata of SD.
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The case of (2,6) distribution with s.g.v. (2,3,5,6)

Each fiber of D is endowed with a conformal structure given by

B(X ,Y ) := [X , [Z ,Y ]] modD3, X ,Y ∈ D,Z ∈ D2/D

(note that dim D2/D = 1).
B(X ,Y ) = B(Y ,X ) by Jacobi identity.
The Tanaka symbol of D at q is determined by the signature of
B and there are exactly three Tanaka symbols: elliptic (B is sign
definite), parabolic (B is degenerate, of rank 1), and hyperbolic
(B has signature (1,1)):
One can choose a basis (X1, . . . ,X6) in Tanaka symbols such
that g−1 = 〈X1,X2〉, X3 = [X1,X2], X4 = [X1,X3], X5 = [X2,X3]
and the only additional possibly nonzero Lie products of vectors
X1, . . .X6 are

[X1,X4] = X6, [X2,X5] = εX6, ε ∈ {−1,0,1} (3)
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Jacobi singularity set for (2,3,5,6) distributions and the
case of flat distribution

SD = {λ ∈WD : B (π∗C(λ), π∗(C(λ))) = 0}, i.e. C(λ) is
projected to a null line of B.
The canonical section of J(4−n) can be taken as

E =
∂u6

B(π∗~h(λ), π∗~h(λ))

and the generalized Wilczynski invariants Ai with i = 1,2 are in
general homogeneous rational functions of degree 2(i + 1) with
denominators being 2(i + 1)st powers of the quadratic
polynomial Q(λ) := B

(
π∗~h(λ), π∗~h(λ)

)
.

However , if the characteristic distribution C is tangent to the
level sets of Q , then A1 and A2 are polynomials. In particular,
for the flat distributions with parabolic Tanaka symbol
A1 = A2 = 0 , and with the elliptic or hyperbolic Tanaka symbol

A1 =
74

175
u4

6 , A2 = −
178

15435
εu6

6 , ε = ±1.
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