
Geometry of rank 2 distributions via abnormal
extremals: algebraic structure of invariants

and absolute parallelism

Igor Zelenko

Texas A&M University, USA

Grieg seminar, talk 2
June 15, 2021

1 / 36



Summary of the previous talk: Jacobi curves

The Jacobi curve Jγ produces the curve of flags in ∆(γ) via a
series of osculations and skew-orthogonal complements:
· · · ⊂ J(−ν)

γ ⊂ · · · ⊂ J(0)
γ = Jγ ⊂ J(1)

γ ⊂ · · · ⊂ J(ν)
γ ⊂ · · · ⊂ ∆(γ)

The curve J(4−n)
γ is called convex at λ if dim J(4−n)

γ = 1, i.e. near
λ, J(4−n)

γ is a curve in the projective space P∆(γ) (moreover, it
is the self-dual curve in the projective space)
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Summary of geometry of curves in projective space

1 Canonical projective structure on a curve: i.e. the set of
distinguished parametrizations defined up to a Möbius
transformation.

2 If k is the dimension of the projective space, then for a
convex curve in the projective space the set of fundamental
invariants consists of k − 1 relative invariantsWi of degree
i + 2, i = 1, . . . , k − 1, called the Wilczynski invariants.
HereWi is a degree i + 2 homogeneous polynomial on the
tangent line at every point of the curve. In the given
parametrization t it can be written asWi(t) = Ai(t) dt i+2.
The function Ai(t) is called the density of the Wilczynski
invariant w.r.t. the parameter t .

3 The curve in a projective space is self-dual if and only if all
Wilczynski invariants of odd degree are equal to zero.
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Summary on generalized Wilczynski invariants
Fix a local basis (X1,X2) of D. Set

X3 := [X1,X2], X4 := [X1,X3], X5 := [X2,X3].
~hX1,X2

:= u4
−→u 2 − u5

−→u 1, ~hX1,X2
is the generator of the characteristic

foliation on P(D2)⊥ , associated with the local basis (X1,X2).

Let RD ⊂ (D2)⊥\(D3)⊥ be the Jacobi regularity locus of D , i.e. the
set of λ ∈WD such that the germ of Jγ(λ) at λ is convex, where γ is
the abnormal extremal passing through λ.

For any λ ∈ RD, letWλ
2i be the 2i th Wilczynski invariants of the Jacobi

curve Jγ at λ, 1 ≤ i ≤ n − 4. Wλ
2i is a degree 2(i + 1) homogeneous

function on the tangent line to γ at λ.
To any (local) basis (X1,X2) of D we assign the following real-valued
function on RD: AX1,X2

i (λ) :=Wλ
2i

(
~hX1,X2

(λ)
)
.

Change of the local baisis causes the multiplication on a positive
function depending on the base M only, i.e. the restriction AX1,X2

i to
RD(q) := RD ∩ π−1(q) is the well defined function, up to the
multiplication on a positive constant, the i th generalized Wilczynski of
D and denoted by Ai .
Ai |RD(q) is a degree 2(i + 1) homogeneous rational function on
(D2)⊥(q). 4 / 36



Summary on the canonical section of a parametrized
curve in PV

Assume that the curve J in a k dimensional projective space
PV of a vector space V is parametrized somehow: t 7→ J(t).
Let t 7→ E(t) be a section of J (considered as the tautological
bundle over itself).
The convexity assumption is that E(t),E ′(t), . . . ,E (k)(t)
constitute a basis of V .
Among all sections of J there is the unique section, up to a
multiplication by a constant, such that

dk+1

dtk+1 E(t) =
k−1∑
i=0

Bi(t)
d i

dt i E(t),

called the canonical section of J (i.e. Bk ≡ 0) w.r.t. to the
chosen parametrization.
If J is self-dual, k = 2m − 1 and ω is the associated (conformal)
symplectic form on V , then E(t) is canonical iff ω(E (m),E (m−1))
is independent of t .
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How to calculate the Wilczynski invariants?

First, on the level of a curve J in Lagrangian Grassmannian
LG(V ) of a 2m-dim. symplectic space (V , ω) (keep in mind that
for (2,n)-distributions m = n − 3):

Step 1 Find the osculating flag, in particular, check whether J(1−m)

is one-dimensional.
Step 2 Choose some section Ẽ of J(1−m) and a parametrization

(not necessarily projective) of J (by a parameter t).
“Normalize” it to make it canonical w.r.t. to the chosen
parameter. In fact, if α =

∣∣∣ω (Ẽ (m), Ẽ (m−1)
)∣∣∣, then

E := α−1/2Ẽ is a canonical section w.r.t. t .
Step 3 Instead of going further with Lagerre-Forsyth normalization

to find a projective parameter, use universal polynomial
formulas for the densities of Wilczynski invariants in terms
of polynomials in the coefficients {Bi}2m−2

i=0 and their
derivatives w.r.t. this originally chosen parameter.
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Some formula for the first two nontrivial Wilczinski
invariants of self-dual curves

If
d2m

dt2mE(t) =
∑2m−2

i=0 Bi(t) d i

dt i E(t), and W2i(t) = Ai(t)dt2(i+1),
then
A1 = (2m − 2)!

(
1

(2m−2)(2m−3)B2m−4 + (10m+7)
20(4m2−1)m B2

2m−2 −
3

20 B′′2m−2

)
.

In particular:

m = 2 (the case of (2,5) distributions)
A1 = B0 + 9

100 (B2)2 − 3
10 B′′2

m = 3 (the case of (2,6) distributions)
A1 = 2

(
B2 + 37

175 (B4)2 − 9
5 B′′4

)
If m = 3
A2 = B0 + 1

441 B2B4 + 178
15435 (B4)3− 5

18 B′′2 −
5

441 (B′4)2− 59
441 B4B′′4 + 37

7 B(4)
4
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On the level of a (2,n)-distribution D: Choose a local basis
(X1,X2) of D again and let ~h = u4

−→u 2 − u5
−→u 1.

~h defines the parametrization on any abnormal extremal γ and
therefore on the Jacobi curve Jγ .
The operation d

dt on sections of J translates to the operation
ad~h on appropriate vector fields on P(D2)⊥ (or (D2)⊥).

Step 1 For every λ ∈ (D2)⊥ find the osculating flag of Jγ at λ, in
particular, check whether J(4−n) is one-dimensional (in this way
you also find the Jacobi regularity set RD).

Step 2 Choose some section Ẽ of the line distribution J(4−n).
“Normalize” it to make it canonical w.r.t. to the parametrization
given by ~h: if α =

∣∣∣σ ((ad~h)mẼ , (ad~h)m−1Ẽ
)∣∣∣, then

E := α−1/2Ẽ(t) is a canonical section J(4−n) w.r.t. the
parametrization by ~h

Step 3 Find the decomposition of (ad~h)2mE in the linear combination
w.r.t. {(ad~h)iE}2m−2

i=0 and use the universal polynomial formulas
for the density of Wilczynski invariants in terms of universal
polynomials in these coefficients and their directional derivative
w.r.t. ~h. 8 / 36



Suppose the canonical section E w.r.t. the parametrization by ~h
is found, m := n − 3, and

(ad~h)2mE =
2m−2∑
i=0

Bi(ad~h)iE mod
(
~h,Euler field

)
〉

Then the first generalized Wilczynski invariant is given by
A1 = (2m − 2)!

(
1

(2m−2)(2m−3)B2m−4 + (10m+7)
20(4m2−1)m

B2
2m−2 −

3
20 (ad~h)2(B2m−2)

)
.

In particular:
m = 2 (the case of (2,5) distributions)

A1 = B0 + 9
100(B2)2 − 3

10(ad~h)2B2(t)
m = 3 (the case of (2,6) distributions)

A1 = 2
(
B2 + 37

175(B4)2 − 9
5(ad~h)2B4

)
A2 := the last formula on the slide before the last one with
d
dt replaced by ad~h.
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Discussions on algebraic structure of generalized
Wilczynski invariants

For n = 5 and s,g,v (2,3,5), P(D3)⊥ = ∅;
J(4−n) = V, the tangent to the fibers of the bundle
π : P(D2)⊥ → D.
IfSD := WD\RD, then SD = ∅.
The canonical section w,r,t, to ~hX1,X2 satisfies:
E(λ) = γ4(λ)∂u4 + γ5(λ)∂u5 , where γ4(λ)u5 − γ5(λ)u4 ≡ 1 ( e.g.,
E = 1

u5
∂u4 or − 1

u4
∂u5 ).

The only generalized Wilczynski invariant A1 is a homogeneous
degree 4 polynomial on the fibers and can be computed using
the formula in the previous slide.

For n > 5 the (complexification of) Jacobi singularity set SD is
not empty and the generalized Wilczynski invariant are not
polynomials for generic distributions (they are homogeneous
rational functions). This is the case when (complexified) SD is
not empty and the (complexified) characteristic line distribution
C is not tangent to the maximal strata of SD.
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The natural questions are:
How to describe the singularities/the denominator of the
components of the vector field E , which is the canonical
section of the curve J(4−n)

γ or , equivalently, the set
SD = WD\RD, the Jacobi singularity locus or its
complexification ?
How does this set depend on the Tanaka symbol of the
distribution?
What is the algebraic structure of generalized Wilczynski
invariant and what more simple invariants can be extracted
from it?
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Quasi-weights

Assume that D has the small growth vector (j1, j2, . . . jµ), with
j1 = 2, j2 = 3, j3 = 5, jµ = n, and j0 := 0.
Fix a local frame (X1, . . .Xn) of TM adapted to the weak derived
flag : Dk = 〈X1 . . .Xjk 〉, 1 ≤ q ≤ µ. Define:

1 the (quasi) impulses ui : T ∗M → R of v.f. Xi by
ui(p,q) = pXi(q), q ∈ M,p ∈ T ∗q M;

2 the structure functions ck
ij by [Xi ,Xj ] =

∑n
k=1 ck

ij Xk ;
3 the quasi-weights wt for various objects:

wt(Xi ) := k if jk−1 < i ≤ jk ;
wt(ui ) = wt(~ui ) = −wt (∂ui ) := wt(Xi );
wt(ck

ij ) := wt(Xi ) + wt(Xj )− wt(Xk ); Note that wt(ck
ij ) ≥ 0 as

[Di ,Dj ] ⊂ Di+j and ck
ij depends on the Tanaka symbol iff

wt(ck
ij ) = 0;

The quasi-weights of product of two quasihomogeneous
objects is the sum of their quasi-weights (the product might
be the usual multiplication or the directional derivative a
long a vector field)⇒ quasi-weight of functions and vector
fields polynomial/rational w.r.t. the fibers.
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Quasihomogeneity of the canonical sections of curves
J(4−n)
γ induced by Jacobi curves

For example, if ~h = u4~u2 − u5~u1 (the generator of the
characteristic line distribution C), then wt(~h) = 4.

Observation 1: If E(λ) is the canonical section (of the curve
J(4−n)
γ (λ) w.r.t. the parametrization by ~h), then E is

quasihomogeneous (counting the weight of structures
functions) and wt(E) = 14− 4n, so that the sequence
{wt((ad~h)jE)}2n−7

j=0 is an arithmetic progression symmetric w.r.t.
to 0 (exactly as for the spectrum of the action of an elements of
the Cartan subalgebra of sl2 on a (2n − 6)-dimensional
irreducible sl2-module).

n = 5: {wt((ad~h)jE)}3j=0 = {−6,−2,2,6};
n = 6: {wt((ad~h)jE)}5j=0 = {−10,−6,−2,2,6,10};
n = 7: {wt((ad~h)jE)}7j=0 = {−14,−10,−6,−2,2,6,10,14}.

The difference in the progression is 4, because wt(~h) = 4.
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Quasihomogeneity of generalized Wilczynski
invariants

Observation 2: The i th generalized Wilczynski invariant is a
rational function on the fibers of (D2)⊥ which is
quasihomogeneous (counting the structure functions), and
wt(Ai) = 8(i + 1).

Explanation: (ad~h)2n−6E︸ ︷︷ ︸
wt=4n−10

=
2n−8∑
j=0

Bi (ad~h)2n−8−jE︸ ︷︷ ︸
wt=4n−18−4j

mod
(
~h,Euler field

)
〉 ⇒

wtAi = wt(ad~h)2n−6E −wt(ad~h)2n−8−2iE = 4n−10− (4n−18−8i) = 8(i +1)

If Ai is not zero for a flat distribution with a given Tanaka
symbol, then in general Ai is not quasihomogeneous in ui ’s, i.e.
without counting the structure functions.
Besides, Ai is always homogeneous in the usual sense w.r.t. ui
of degree 2(i + 1).
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Natural group action on fibers of TM

The Tanaka symbol of D at a point q ∈ M is the graded Lie
algebra m(q) :=

⊕
1≤j≤µ

Dj(q)/Dj−1(q) (here we assume that the s.g.v.

is constant near q and that µ is the degree of nonholonomy, Dµ = TM).

Let GL+ (D(q)) be the subgroup of GL (D(q)) preserving the
weak derived flag {Dj(q)}µj=1.

Any A ∈ GL+ (D(q)) induces grA ∈ GL+ (m(q)):

∀x ∈ Dj(q)/Dj−1(q) (grA)x := Ax mod Dj−1.

Let G0(q) ⊂ GL (m(q)) be the group of automorphisms of the
graded Lie algebra m(q), G0

(
m(q)

)
= Aut(m(q)) (Lie (G0(q)) is

the degree zero component of the Tanaka prolongation of
m(q)).

Let G+(q) = {A ∈ GL+ (D(q)) : grA ∈ G0(q)}
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Naturally induced group action on the fibers of (D2)⊥

Natural filtration on T ∗q M ( and therefore on the fibers (D2)⊥(q)

of (D2)⊥) dual to the weak derived flag:

T ∗q M ⊃ D⊥(q) ⊃ (D2)⊥(q) ⊃ (D3)⊥(q) ⊃ . . . (1)

The natural action of G+(q) on TqM induces the natural action
of G+(q) on T ∗q M preserving the filtration (1) and , in particular,
induces the action on (D2)⊥(q).
One can use this action (together with the mentioned usual
homogeneity and quasi-homogeneity) to deduce more simple
invariants (on the base manifold) via some representation
theory (and without precise calculations of those Wilczynski
invariants).
We still need to have some information on the Jacobi singular
set/the denominator of the canonical section E .
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Demonstration of the method on (2,6) distributions
with s.g.v. (2,3,5,6)

Each fiber of D is endowed with a conformal structure given by

B(X ,Y ) := [X , [Z ,Y ]] modD3, X ,Y ∈ D,Z ∈ D2/D

(note that dim D2/D = 1).
Implicitly we use here that for a rank 2 distribution with
dim D3 = 5 D and D3/D2 are canonically identified (up to a
scalar multiplication) by X 7→ [Z ,X ] mod D2, X ∈ D,Z ∈ D2/D.
B(X ,Y ) = B(Y ,X ) by Jacobi identity.
Explanation:

B(X ,Y ) = [X , [Z ,Y ]] modD3 Jacobi
= [[X ,Z ],Y ]︸ ︷︷ ︸

[Y ,[Z ,X ]]

+ [Z , [X ,Y ]]︸ ︷︷ ︸
0

modD3 = B(Y ,X).

The Tanaka symbol of D at q is determined by the signature of
B and there are exactly three Tanaka symbols:

1 elliptic (B is sign definite),
2 hyperbolic (B has signature (1,1)),
3 parabolic (B is degenerate, of rank 1).
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The Jacobi singularity set and the canonical section of
J(4−n)
γ

One can choose a basis (X1, . . . ,X6) in the Tanaka symbol
such that g−1 = 〈X1,X2〉, X3 = [X1,X2], X4 = [X1,X3],
X5 = [X2,X3] and the only additional possibly nonzero Lie
products of vectors X1, . . .X6 are

[X1,X4] = X6, [X2,X5] = εX6, ε ∈ {−1,0,1} (2)

For general (2,3,5,6) distributions the equality in (2) are
modD3.
Let Q(λ) := B

(
π∗~h(λ), π∗~h(λ)

)
. Then in the chosen local

frame Q(λ) = εu2
4 + u2

5 .

The Jacobi singularity set is SD = {λ ∈WD : Q(λ) = 0}, i.e.
λ ∈ SD iff C(λ) is projected to a null line of B.

The canonical section of J(4−n) can be taken as E =
1
Q
∂u6 .
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The generalized Wilzcynski invariants are rational and
the case of flat distribution with given Tanaka symbol

The generalized Wilczynski invariants Ai =
Pi

Q2(i+1), i = 1,2,

where Pi is a polynomial.
Quasi-weight and the usual degree analysis:

1 wtAi = 8(i + 1) and wtQ = 6⇒
wt(Pi) = wt(Ai) + 2(i + 1)wt(Q) = 20(i + 1);

2 If deg denotes the usual degree, then deg Ai = 2(i + 1) and
deg Q = 2⇒ deg Pi = deg Ai + 2(i + 1) deg Q = 6(i + 1).

In general the denominator is not canceled.

However , if the characteristic distribution C is tangent to the
zero level sets of Q , then A1 and A2 are polynomials.
In particular, for the flat distributions with given Tanaka symbol

A1 = ε2 74
175

u4
6 , A2 = −

178
15435

εu6
6 , ε ∈ {−1,0,1}.

For the flat distribution with parabolic Tanaka symbol (ε = 0)
A1 = A2 = 0.
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Group action analysis (elliptic case)

Assume that the Tanaka symbol is elliptic (i.e. ε = 1)
The group G0 ≡ CO(2), G+ acts on the fiber (D2)⊥(q) as the
matrix Lie group with the following matrices in the basis

(∂u4 , ∂u5 , ∂u6):

 c3 cos θ c3 sin θ 0
−c3 sin θ c3 cos θ 0

α4 α5 c4

 , c 6= 0.

In particular,
u6 → c4u6 + α4u4 + α5u5. (3)

Analyze the first generalized Wilczynski invariant A1 =
P1

Q4.

Assume that P1 =
4∑

i=0

gi(u4,u5)ui
6.

(3) yields:
1 g4 → c24g4, i.e. g4 is a well defined, up to a multiplication

by a constant, polynomial on (D2)⊥(q)/(D3)⊥(q) ∼= D(q);
2 g3 → c28g3 − 4(α4u4 + α5u5)c24g4
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Recall that wt(P1) = 40, deg P1 = 12
⇓

wt(g4) = 24, deg g4 = 8
This, wt(u4) = wt(u5) = 3, and 8× 3 = 24 implies that
wt(ck

ij ) = 0 for any ck
ij appearing in g4, i.e. g4 is the same as in

the case of the flat distribution, i.e. , up to a constant g4 = ε2Q4

Conclusion A1 (and actually A2) is not zero for any (2,3,5,6)
distribution with the elliptic or hyperbolic Tanaka symbol.
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So, g4 is fixed (and fixes the symbol).

Now, analyze gi with 0 ≤ i ≤ 3:
deg gi = 12− i so gi can be uniquely represented as

gi =

6−di/2e∑
j=0

hij(u4,u5)Qj , where hij(u4,u5) are harmonic

polynomials, ∆hij = 0, deg hij = 12− i − 2j .

In particular, g3 = h34(u4,u5)Q4 +
3∑

j=0

h3j(u4,u5)Qj with

h34(u4,u5) being linear.
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Then by the transformation u6 → c4u6 + α4u4 + α5u5 (taking
into account that g3 → c28g3 − 4(α4u4 + α5u5)c24 ( 74

175

)
Q4) ,

we can make h34 ≡ 0 (the Ruffini trick or an analog of
completion of squares).

This fixes u6 up to a constant⇔ the direction of X6 mod D2

(the analog of the Reeb field in contact geometry)⇔ reduction
of the group G+ to the group CO(2) represented by the matrix
Lie group with the following matrices in the basis (∂u4 , ∂u5 , ∂u6): c3 cos θ c3 sin θ 0

−c3 sin θ c3 cos θ 0
0 0 c4

 , c 6= 0.

After this reduction:
the tuple of polynomials {gi}3i=0 transforms to the tuple
{c40−4igi}3i=0,
the tuple of harmonic polynomials {hij}0≤i≤3,0≤j≤6−di/2e
(where h34 = 0 and thus can be excluded) transforms to
the tuple {c40−4i−6jhij}0≤i≤3,0≤j≤6−di/2e
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deg hij = 12− i − 2j , wt(hij) = 40− 4i − 6j
⇓

Since wt(u4) = wt(u5) = 3, the coefficients of hij as a
polynomial in u4,u5 have quasi-weights equal to
wt(hij)− 3 deg hij = 4− i , i.e. they are polynomial expressions
in the structure functions and their derivatives of quasi-weight
4− i .

If z := u4 + iu5, then

hij = rijRe
(

z12−i−2j
)

+ sij Im
(

z12−i−2j
)
.

for uniquely defined rij and sij (which are already the functions
on the base manifolds)-the Fourier coefficients of hij restricted
to the unit circle.
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Conclusions

At a point q ∈ M the tuple of numbers

{rij , sij}0≤i≤3,0≤j≤6−di/2e,(i,j)6=(3,4)

is defined up to a transformation

{c40−4i−6j rij , c40−4i−6jsij}0≤i≤3,0≤j≤6−di/2e,(i,j)6=(3,4)

for c 6= 0 and rij , sij are polynomial expressions in the structure
functions and their derivatives of quasi-weight 4− i .

Similar analysis can be done with the second generalized
Wilczynski invariant, giving even more invariants due to higher
degrees.

There should be a lot of syzygies between these invariants as
one expects only 2(6− 2)− 6 = 2 functional invariants for
generic (2,6)-distributions.
The case of hyperbolic Tanaka symbol is completely analogous
(with the group CO(1,1) and the d’Alembertian instead of the
group CO(2) and the Laplacian).
The parabolic case is different but still treatable. 25 / 36



Comparison with Tanaka theory on a level of
Wilczynski invariants
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Absolute parallelism , way one: for n > 5 without
Tanaka theory (B. Doubrov, I. Z., 2006 & 2009)

Given λ ∈ RD ⊂ (D2)⊥ let Pλ be the set of all projective
parametrizations ϕ : γ 7→ R on the characteristic curve γ ,
passing through λ, such that ϕ(λ) = 0.
ΣD := {(λ, ϕ) : λ ∈ RD, ϕ ∈ Pλ} is a principal bundle over RD
with the structural group of ST (2) of all Möbius transformations,
preserving 0; dim ΣD = 2n − 1.

Theorem
For any (2,n)-distribution, n > 5, of maximal class there exists
the canonical frame on the corresponding (2n − 1)-dimensional
manifold ΣD × Z2. Any (2,n)-distribution of maximal class with
(2n − 1)-dimensional Lie algebra of infinitesimal symmetries is
locally equivalent to the distribution Do , associated with the
Monge equation z ′(x) =

(
y (n−3)(x)

)2 (∼= parabolic flat for
n = 6) ; symm(Do) ∼= gl2 n n2n−5, where n2n−5 is the
(2n − 5)-dim. Heisenberg algebra .

27 / 36



Explanation: One can construct an Ehresmann connection on
the bundle Π : SigmaD → RD

The abnormal extremals are lifted uniquely to ΣD and the lifts
are already parametrized , because the points of the fibers of
ΣD consist of parametrizations, i.e. on ΣD a well define vector
field

−→
H tangent to the lifts of abnormal extremal is defined.

So, for any (λ, ϕ) consider the canonical section Eλ,ϕ of the
Jacobi curve through λ w.r.t the parametrization ϕ, then lift it to
ΣD and produce the moving frame by iterative brackets with

−→
H

and some pairs of them.
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Absolute parallelism , way two: for n ≥ 5 using Tanaka
theory but after sympectification

Instead of the original distribution D on M we work with the rank
2 distribution D = C ⊕ J(4−n) on PRD ⊂ P(D2)⊥.
This distribution have the same Tanaka symbol (see the left
picture below ) for all (2,n) -distributions of maximal class.
The Tanaka prolongation of this symbol is gl2 n n2n−5 if n > 5
and G2 if n = 5 (see the right picture with the root diagram for
G2). Tanaka-Morimoto theory for D ⇒ Cartan connection (but
over PRD ⊂ P(D2)⊥, not over M).
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Absolute parallelism, way three: modified Tanaka
theory for flag structures

Instead of the original distribution D on M we work with the
contact structure ∆ together with a self-dual curve in the
projectivization of each fiber of ∆.
Algebraically we start to prolong the algebra
symm(the most symmetric convex curve)︸ ︷︷ ︸

g0

n the Tanaka symbol of∆︸ ︷︷ ︸
g−

.

The Tanaka symbol of the contact distribution ∆ is n2n−5.

The most symmetric convex curve in projective space P∆ is the
rational normal curve, represented as [1 : t : . . . : t2n−7])⇔ all
Wilczynski invariants of such curve vanish. ⇒ g0 = gl2 in an
appropriate basis.
The prolongation of gl2 n n2n−5 gives the same result as before.

The last two methods can be generalized to distributions of
arbitrary rank (B. Doubrov, I. Z., 2016& 2020).
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Distributions with vanishing Wilczynski invariants

For the most symmetric rank 2 distributions of maximal class
(corresponding to the Monge equation z ′(x) =

(
y (n−3)(x)

)2) all
generalized Wilczynski invariants vanish.

Open question: Is the converse true, i.e., from the fact that all
generalized Wilzyinski invariants vanish it follows that the
distribution is equivalent to the above most symmetric one?

The answer is positive if one restricts to a special class of
distribution associated with

z ′(x) := f (x , y , y ′, . . . , y (n−3)), Fy (n−3)y (n−3) 6= 0 (4)

(B. Doubrov , I.Z. 2011)

If at least one generalized Wilczynski invariant is non-zero, the
maximal infinitesimal symmetry is (2n − 3)-dimensional and all
such distribution are locally classified (B. Doubrov, I. Z., 2014):
they correspond to (4) with f being quadratic w.r.t. the
derivatives with constant coefficients.
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Is the symplectification inevitable/ natural
algebraically?

Returning to (2,3,5,6) distribution, if we apply the standard
Tanaka theory for distributions with given Tanaka symbol m:

1 The algebraic prolongation of the ellitpic and hyperbolic
symbols are 8-dimensional (co(2) n m(q) and
co(1,1) n m(q), respectively); the first algebraic
prolongation vanishes; It is expected that in this cases
there is a canonical Cartan connection;

2 The flat distribution with parabolic symbol is the most
symmetric one with 2× 6− 1 = 11-dim symmetry
algebra⇒ the Tanaka prolongation is 11-dimensional and
isomorphic to gl2 n n7 (with an appropriate grading, see
pucture on the next slide) :

dim g0 = 3: g0 is the algebra of triangular 2× 2 matrices (G0
preserves the null line of the (degenerate) canonical
quadratic form B).
dim g1 = 2.

32 / 36



33 / 36



Question: Is there a (linear) normalization condition for the
geometric Tanaka prolongation leading to the Cartan
connection?

We expect that the answer is NO and then one can try to find a
normalization condition having the maximal stabilizer (under
the adjoint action of the Lie group corresponding to the
nonnegative part of the Tanaka prolongation).

Is this maximal stabilizer equal to T2 (the group of the triangular
nonsingular 2× 2 matrices⇔ the Borel of GL2), which is the
group corresponding to the nonnegative part of the Tanaka
prolongation of the Tanaka symbol of the distribution D on
P(D2)⊥ by means of which we constructed the Cartan
connection (over P(D2)⊥) by the second method?

If yes, it will give an algebraic justification for our
symplectification procedure (one requires to make a lift from the
original manifold M somewhere ( P(D2)⊥) to construct the
Cartan connection (and therefore invariants) upstairs).
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