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Definition of vector distributions

A rank ` distribution D on an n-dimensional manifold M (or
shortly an (`, n)-distribution) is a rank l vector subbundle of the
tangent bundle TM:

D = {D(q)}, D(q) ⊂ TqM, dim D(q) = `

. Locally there exists ` smooth vector fields {Xi}`i=1 such that

D(q) = span{X1(q), . . . ,Xl(q)}
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Equivalence problem for vector distributions

The group of of diffeomorphisms of M acts naturally on the set of
(`, n)-distributions by push-forward:

A diffeomorphism F sends a distribution D to a distribution F∗D.

This action defines the equivalence relation: two distributions are
called equivalent if they lie in the same orbit w.r.t. this action.

By complete analogy one can define a local version of this
equivalence relation considering the action of germs of
diffeomorphisms on germs of (`, n)-distributions.

Question: When two germs of distributions are equivalent, or, in
other words, when two rank ` distributions are locally equivalent?
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Motivation 1: Control Theory

1. Control Theory: state-feedback equivalence of control systems
linear w.r.t. control parameters.

To a distribution D with a local basis {X1, . . . ,X`} one can assign
the following control system

q̇(t) = u1(t)X1

(
q(t)

)
+ . . .+ u`(t)X`

(
q(t)

)
a.e. q(t) ∈ M,

u(t) = (u1(t), . . . u`(t)) ∈ R`.

Such control systems appear naturally in Robotics as systems
describing car-like robots (cars with trailers) and, more generally,
nonholonomic robots.
The question in this setting: Given such control system to
what more simple system can one transform it by a change
of coordinates and a change of a local basis?
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Motivation 2: Geometric theory of differential equation

A system of differential equations viewed geometrically is a
submanifold of a jet space and the canonical Cartan distribution on
this jet space induces the distribution on this submanifold.

Therefore, various type of equivalence of differential equations
(contact, point etc) can be reformulated as equivalence problems
for vector distributions.

Igor Zelenko Geometry of filtered structures



Statement of the problem
Review of Tanaka theory

Symplectification procedure

Motivation 2: Geometric theory of differential equation

A system of differential equations viewed geometrically is a
submanifold of a jet space and the canonical Cartan distribution on
this jet space induces the distribution on this submanifold.

Therefore, various type of equivalence of differential equations
(contact, point etc) can be reformulated as equivalence problems
for vector distributions.

Igor Zelenko Geometry of filtered structures



Statement of the problem
Review of Tanaka theory

Symplectification procedure

Motivation 2: Geometric theory of differential equation

A system of differential equations viewed geometrically is a
submanifold of a jet space and the canonical Cartan distribution on
this jet space induces the distribution on this submanifold.

Therefore, various type of equivalence of differential equations
(contact, point etc) can be reformulated as equivalence problems
for vector distributions.

Igor Zelenko Geometry of filtered structures



Statement of the problem
Review of Tanaka theory

Symplectification procedure

Weak derived flag and small growth vector

D = D1,

D2(q) = D(q) + [D,D](q) =
span{Xi (q), [Xi ,Xk ](q) : 1 ≤ i < k ≤ l},

and recursively
D j(q) = D j−1(q) + [D,D j−1](q) =
= span { all iterated Lie brackets of the fields
Xi of length not greater than j evaluated at a point q} .

D j is called the jth power of the distributions D

The filtration D(q) = D1(q) ⊂ D2(q) ⊂ . . .D j(q), . . . of the
tangent bundle TqM, called a weak derived flag of D at q.

The tuple (dim D(q), dim D2(q), . . . , dim D j(q), . . .) is called the
small growth vector of Dat the point q (or, shortly, s.v.g.).
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Involutive and bracket-generating distributions

If D2 = D (i.e. D is involutive)

Frobenius theorem⇒ there exists a
foliation of integral submanifolds of D ⇒ All involutive
distributions are locally equivalent one to each other.

We are interested in the so-called bracket-generating distributions
(that is another extreme case and it is generic):

A distribution D is called bracket-generating ( or completely
nonholonomic) if for any q ∈ M there exist µ(q) ∈ N such that
Dµ(q)(q) = TqM. ⇒ controllability of the corresponding control
system (Rashevsky-Chow theorem)
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Example:

` = 2, n = 5.

D = span{X1,X2} ⇒

D2 = span{X1,X2, [X1,X2]}, ⇒

D3 = span{X1,X2, [X1,X2],
[
X1, [X1,X2]

]
,
[
X2, [X1,X2]

]
} ⇒

dim D2 ≤ 3, dim D3 ≤ 5 ⇒

Generic (2, 5)-distributions have small growth vector (2, 3, 5) ⇔

D3 = TM

.
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Statement of the problem
Review of Tanaka theory

Symplectification procedure

Rough estimation of functional parameters

In the sequel we assume that distributions are bracket-generating
and the small growth vector is independent of a point.

How many functions do we need in order to describe an
(`, n)-distribution?

In a fixed coordinate system we can describe a distribution by
dimGr(`, n) = `(n − `) functions.

By a coordinate change we can normalize in general at most n of
them. ⇒

We expect `(n − `)− n functional invariants in our equivalence
problem.
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Statement of the problem
Review of Tanaka theory

Symplectification procedure

Generic distributions without functional invariants

`(n − `)− n ≤ 0 in the following 3 cases only:

1 ` = 1 (line distributions),

2 ` = n − 1 (corank 1 distributions),and

3 one exceptional case: (`, n) = (2, 4).

Moreover, generic germs of (`, n)-distributions are equivalent one
to each other in all these cases:

1. ` = 1 2. ` = n − 1 3. (`, n) = (2, 4)
Rectification of Darboux’s normal form Engel’s normal form

vector fields dx1 −
[ n−1

2
]∑

i=1

x2idx2i+1 = 0

{
dx2 − x3dx1 = 0
dx3 − x4dx1 = 0
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Statement of the problem
Review of Tanaka theory

Symplectification procedure

General ideology for solving equivalence problems

In all other cases generic germs of (`, n)-distribution have
functional invariants.

The way to solve the equivalence problem is to construct the
canonical frame (coframe) or the structure of an absolute
parallelism on a certain N-dimensional fiber bundle P over M,
{Fi}Ni=1 ⊂ Vec(M) such that

span{Fi (Q)}Ni=1 = TQP, ∀Q

Assume that [Fi ,Fj ] =
N∑

k=1

ck
jiFk

The structure functions ck
ji are invariants

Dimension of (local) group of symmetries of D is ≤ N.
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Statement of the problem
Review of Tanaka theory

Symplectification procedure

Cartan’s (2, 3, 5) case

The smallest dimensional case when the functional invariants
appear is the case (`, n) = (2, 5) (the expected number of

functional invariants in this case is equal to 2× 3− 5 = 1.)

(2, 5)-distribution with s.g.v. (2, 3, 5) -E. Cartan, 1910:

1 Canonical frame on 14-dimensional principal bundle over M

More precisely, G2-valued Cartan connection and
for the most symmetric (2, 5)-distribution the algebra of
infinitesimal symmetries ∼ G2 ;

2 An invariant homogeneous polynomial of degree 4 on each
plane D(q)
If the roots of the projectivization of this polynomial are
distinct, then
their cross-ratio - one functional invariant of D.
(3, 6)-distribution with s.g.v. (3, 6) R. Bryant, 1979
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Statement of the problem
Review of Tanaka theory

Symplectification procedure

Tanaka’s approach: main ideas

N. Tanaka (1970, 1979)-Nilpotent Differential Geometry- the
refinement (an algebraic version) of the Cartan equivalence method
for filtered structures

1 At any point q ∈ M to pass from the weak derived flag of D
(a filtered object) to the corresponding graded object −
the symbol of D -a nilpotent graded Lie algebra;

2 Among all distributions with given constant symbol at any
point to distinguish the most simple one- the flat distribution
with given constant symbol;

3 To imitate the construction of the canonical frame for all
distributions with given constant symbol by the construction
of such frame for the the flat distribution.

All steps are described in the language of pure Linear Algebra: in
terms of natural algebraic operations in the category of graded Lie
algebras
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Statement of the problem
Review of Tanaka theory

Symplectification procedure

Review of Tanaka’s theory: the symbol of D at a point

For the weak derived flag at q ∈ M
D(q) = D1(q) ⊂ D2(q) ⊂ . . .D j(q) ⊂ · · · ⊂ Dµ(q) = TqM

set


g−i (q) = D i (q)/D i−1(q), i > 1

g−1(q) := D1(q)

and consider the corresponding graded object:

m(q) = g−1(q)⊕ g−2(q)⊕ · · · ⊕ g−µ(q)

m(q) is endowed naturally with the structure of a graded nilpotent
Lie algebra

m(q) is called the symbol of the distribution D at the point q
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Statement of the problem
Review of Tanaka theory

Symplectification procedure

Example: the symbol of Cartan’s (2, 3, 5) case

A (2, 5) distribution with small growth vector (2, 3, 5) at any point
have the symbol isomorphic to

the so-called free nilpotent 3-step Lie algebra with two generators,

i.e. the graded Lie algebra m̃ = g−1 ⊕ g−2 ⊕ g−3 such that

g−1 = span{Y1, Y2}, g−2 = span{Y3}, g−3 = span{Y4,Y5}.
and the only nonzero products are

[Y1,Y2] = Y3, [Y1,Y3] = Y4, [Y2,Y3] = Y5.
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Statement of the problem
Review of Tanaka theory

Symplectification procedure

The flat distribution of constant symbol m

Fix a graded nilpotent Lie algebra m =
−1⊕

i=−µ
gi .

Question: What is the most simple distribution with constant
symbol m?

Let M(m) be the simply connected Lie group with Lie algebra m;
e be the identity of M(m).

The flat (or standard) distribution Dm of type m is the
left-invariant distribution on M(m) such that Dm(e) = g−1.

Question: What is the algebra of infitesimal symmetries of the flat
distribution of type m?
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Statement of the problem
Review of Tanaka theory

Symplectification procedure

Universal algebraic prolongation & symmetries of the flat
distribution

The universal prolongation of the symbol m =
−1⊕

i=−µ
gi is the

maximal non-degenerate graded Lie algebra containing m as its
negative part. More precisely,

Definition. Universal prolongation of the symbol m is a graded Lie

algebra U(m) =
⊕
i∈Z

gi (m) satisfying the following conditions.

1 the graded subalgebra
⊕
i<0

gi (m) of U(m) coincides with m;

2 (non-degenericity assumption) for any x ∈ g i (m), i ≥ 0 such
that x 6= 0 we have adx |m 6= 0

3 U(m) is the maximal graded algebra satisfying conditions (1)
and (2) above.
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Statement of the problem
Review of Tanaka theory

Symplectification procedure

Universal algebraic prolongation & symmetries of the flat
distribution: continued

If dimU(m) <∞, then U(m) is isomorphic to the algebra of
infinitesimal symmetries of the flat distribution Dm with symbol m.

If dimU(m) =∞, then the completion of U(m) is isomorphic to
the algebra of formal power series of infinitesimal symmetries of
the flat distribution Dm with symbol m.

The universal algebraic prolongation can be explicitly realized
inductively (g0(m), g1(m) etc).

Its calculation is reduced to pure Linear Algebra:

The universal algebraic prolongation is in fact the kernel of certain
coboundary operator for certain Lie algebra cohomology
(generalized Spencer or antisymmetrization operator).
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Example: Universal prolongation of flat (2,3,5) distribution

The root system of G2:

 
 

m̃ = g−1 ⊕ g−2 ⊕ g−3

U(m̃) = g3 ⊕ g2 ⊕ g1 ⊕ g0⊕ g−1 ⊕ g−2 ⊕ g−3︸ ︷︷ ︸
m̃

∼= G2

 

The grading corresponds to the marking of the shorter root in the
Dynkin diagram of G2.
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Tanaka’s Main Theorem of prolongation

Assume that D is a distribution with constant symbol m, i.e.
symbols m(q) are isomorphic (as graded Lie algebras) to m for any
point q.

Suppose that dimU(m) <∞ and k ≥ 0 is the maximal integer
such that the kth algebraic prolongation gk(m) does not vanish.

Theorem (Tanaka, 1970)

1 To a distribution D with constant symbol m one can assign in
a canonical way a bundle over M of dimension equal to
dimU(m) equipped with a canonical frame.

2 Dimension of algebra of infinitesimal symmetries of D is not
greater than dimU(m).

3 This upper bound is sharp and is achieved if and only of a
distribution is locally equivalent to the flat distribution Dm.
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Tanaka’s main Theorem of prolongation: continued

More precisely, to a distribution D with constant symbol m one
can assign in a canonical way (choosing a normalization condition
on each step) a sequence of bundles {P i}ki=0 such that

1 P0 is the principal bundle over M with the structure group
having Lie algebra g0(m);

2 P i is the affine bundle over P i−1 with fibers being affine
spaces over the linear space gi (m) for any i = 1, . . . k;

3 Pk is endowed with the canonical frame.

Therefore Tanaka’s approach allows one to predict the number of
prolongations steps and the dimension of the bundle, where the
canonical frame lives, without making concrete normalizations
on each step (as the original Cartan method of equivalence
suggests)
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Restrictions and disadvantages of Tanaka’s approach

All constructions strongly depend on the notion of symbol.

In order to apply this machinery to all bracket-generating
(`, n)-distributions with fixed ` and n, one has

1 to classify all n-dimensional graded nilpotent Lie algebras with
` generators.- hopeless task in general;

2 to generilize the Tanaka prolongation procedure to
distributions with nonconstant symbol, because the set of all
possible symbols may contain moduli.
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For example,

for (2, 6)-distribution with generic s.v.g. (2, 3, 5, 6) there are 3
non-isomorphic symbols:
mε = span{Y1,Y2} ⊕ span{Y3} ⊕ span{Y4,Y5} ⊕ span{Y6}
s.t.
[Y1,Y2] = Y3, [Y1,Y3] = Y4, [Y2,Y3] = Y5,
[Y1,Y4] = Y6, [Y2,Y5] = εY6,
where ε = −1, 0, or 1 (hyperbolic, parabolic, elliptic symbols);

bracket generating (2, 7)-distribution with s.v.g. (2, 3, 5, . . .)
have 8 non-isomorphic symbols;

Moduli appears for symbols of (2, n) distributions starting
from n = 8.
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Alternative approach - Symplectification Procedure

Symplectification Procedure consists of the reduction of the
equivalence problem for distributions to extrinsic differential
geometry of curves of flags of isotropic and coisotropic
subspaces in a linear symplectic space, which is simpler in
many respects than the original equivalence problem.

It gives an explicit unified construction of canonical frames for
huge classes of distributions, independently of their Tanaka
symbol and even of the small growth vector

The origin of the method - Optimal Control Theory
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The key idea: study of the flow of abnormal extremals

The key idea (Agrachev, 1997) is that the invariant of a geometric
structure on a manifold can be obtained by studying the flow of
extremals of variational problems naturally associated with this
geometric structure.

For a distribution take any variational problem on a space of
integral curves of this distribution with fixed endpoints
and distinguish so-called abnormal extremals that are exactly the
Pontryagin extremals of such variational problem with zero
Lagrange multiplier near the functional. ⇒
Abnormal extremals do not depend on the functional but on the
distribution D only.
They foliate a special even dimensional submanifold HD of the
projectivization P(T ∗M) of the cotangent bundle T ∗M.
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Jacobi curve of abnormal extremal

The set N of abnormal extremals considered as the quotient of the
special submanifold HD by the foliation of these extremals is
endowed with the canonical contact distribution ∆ induced by the
tautological 1-form (the Liouville form ) on T ∗M.

The set HD inherits the structure of a fiber bundle (over M) from
T ∗M.

The dynamics of the fibers of HD by the “flow of extremals” along
the given extremal γ is encoded by a curve of isotropic subspaces
in the hyperplane ∆(γ) of TγN- intrinsic Jacobi equation along γ.

Collecting the osculating spaces of this curve of any order together
with their skew symmetric complements we assign to the abnormal
extremal γ a curve Fγ of isotropic/coisotropic subspaces on the
hyperplane ∆(γ) of TγN called Jacobi curve of the extremal γ.
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Statement of the problem
Review of Tanaka theory

Symplectification procedure

The role of Jacobi curves

Any invariant of the Jacobi curve Fγ w.r.t the action of
(Conformal) Symplectic Group on the corresponding flag
variety of isotropic/coisotropic subspaces (or, shortly,
symplectic flags) of ∆(γ) produces an invariant of the
distribution D.

reduction to the geometry of curves of symplectic flags of a
linear symplectic group

The canonical bundles of moving frames associated with
Jacobi curves

⇓
the canonical frame for D itself on certain fiber bundle over
PHD
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Statement of the problem
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Symplectification procedure

More precise properties of Jacobi curve

. . . ⊂ F (ν)
γ ⊆ . . . ⊆ F (0)

γ︸ ︷︷ ︸
isotropic

⊂ F (−1)
γ ⊆ F (−2)

γ ⊆ . . . ⊆ F (−ν)
γ ⊆︸ ︷︷ ︸

coisotropic

,

where

F i
γ(λ) :=

{
(F−i−1
γ (λ))∠ if F−1

γ (λ) is proper coisotropic

(F−i−2
γ (λ))∠ if F−1

γ (λ) is Lagrangian

i.e Fγ(λ) is a symplectic flag for any λ ∈ γ;

(compatibility w.r.t. differentiation) (F i
γ(λ)) ⊂ F i−1

γ (λ)
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Statement of the problem
Review of Tanaka theory

Symplectification procedure

Symbol of Jacobi curve

By analogy with the Tanaka theory let us pass from the filtered to
the graded objects:

Gri (λ) := F
(i)
γ (λ)/F

(i+1)
γ (λ)

The corresponding graded space ⊕Gri (λ) is endowed with the
natural conformal symplectic structure induced from the conformal
symplectic structure on ∆(γ).

The tangent vector to the Jacobi curve at a point corresponding to
λ can be identified with a line sλ ⊂ csp

(
⊕i∈ZGri(λ)

)
of degree

−1, i.e. s.t. sλ(Gri (λ)) ⊂ Gri−1(λ))

sλ is called the symbol of the Jacobi curve at λ.
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Statement of the problem
Review of Tanaka theory

Symplectification procedure

Finiteness of set of symbols of curves

For fixed rank D and dim M the set of all possible symbols of
Jacobi curves, up to an isomorphism, is finite.

This follows from more general fact (E.Vinberg, 1976): If G is a
semisimple Lie group, g is its Lie algebra with given grading
g = ⊕µi=−µgi , and G0 is the connected subgroup of G with the Lie
algebra g0, then the set of orbits of elements of g−1 w.r.t. the
adjoint action of G0 is finite.
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Statement of the problem
Review of Tanaka theory

Symplectification procedure

Jacobi symbols of distributions

Finiteness of the set of symbols, up to isomorphism+ classification
of symplectic symbols

⇓

For a generic point q ∈ M there exists a neighborhood U s.t. the
symbols of Jacobi curves of abnormal extremals through a generic
point of PHD over U are isomorphic to one symbol

s︸︷︷︸ ⊂ csp−1(⊕X i︸︷︷︸)
Jacobi symbol of fixed graded

the distribution D at q symplectic space V := ⊕X i
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Statement of the problem
Review of Tanaka theory

Symplectification procedure

New Formulation:

Instead of constructing canonical frames for distributions according
to their Tanaka symbols to do it according to their Jacobi symbols,
which is

1 Jacobi symbols are simpler algebraic objects than symbols of
distributions:
Jacobi symbols are one-dimensional subspaces in the space of
degree −1 endomorphisms of a graded linear symplectic space,
while Tanaka symbols are graded nilpotent Lie algebras.
In particular, in contrast to Tanaka symbols, Jacobi symbols
can be easily classified.

2 Jacobi symbols are much coarser characteristic of distributions
than Tanaka symbols:
distributions with different Tanaka symbols and even
with different small growth vectors may have the same
Jacobi symbol.
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Statement of the problem
Review of Tanaka theory

Symplectification procedure

Distributions of maximal class

Jacobi curve of a generic abnormal extremal γ satisfies

F
−i(λ)
γ (λ) = ∆(γ) for some integer i(λ)

(2, n)-distributions of maximal class has the same Jacobi symbol
(corresponding actually to a degree −1 endomorphism of graded
symplectic space of dimension 2n − 6 with one Jordan block in its
Jordan normal form).

We checked that for n ≤ 8 all bracket generating
(2, n)-distributions with small growth vector (2, 3, 5, . . .) are of
maximal class

Actually we do not have any example of bracket generating
(2, n)-distributions with small growth vector (2, 3, 5, . . .) which are
not of maximal class.

For example, all (2, 6)-distributions with hyperbolic, parabolic, and
elliptic Tanaka symbols have the same Jacobi symbol.
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Statement of the problem
Review of Tanaka theory

Symplectification procedure

Geometry of curves of flags of isotropic/coisotropic
subspaces with constant symbol s ⊂ csp(⊕X i )

The theory is completely analogous to Tanaka’s one

Flat curve with symbol s (of type s)
Take the corresponding filtration

{V i}i∈Z, V i = ⊕j≥iX
j

The flat curve of type s is the orbit of this flag under the
action of the one-parametric group generated by the symbol
s, t → {etδV i}i∈Z, δ ∈ s is of type s.
The algebra of infinitesimal symmetries of the flat curve with
the symbol s is isomorphic to the largest graded subalgebra
UF (s) of csp(⊕X i ) containing s as its negative part-Universal
prolongation of the symbol s
UF (s) = ⊕i≥−1U i (s), U−1(s) = s
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Review of Tanaka theory

Symplectification procedure

Main theorem on Geometry of Curves of Flags

Theorem (Doubrov-Zelenko)To a curve of flags of
isotropic/coisotropic subspaces with constant symbol s one can
assign in a canonical way a bundle of moving frames of dimension
equal to dimUF (s).

Remark This results can be generalized to natural classes of
curves (and submanifolds) in arbitrary parabolic homogeneous
spaces G/P (and more general homogeneous spaces if the Lie
Algebra of G has fixed grading).
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From canonical moving frames for Jacobi curves to
canonical frames for distributions

Build the following graded Lie Algebra

B(s) =

g−2︷︸︸︷
η ⊕

g−1︷ ︸︸ ︷
(⊕X I )︸ ︷︷ ︸

V︸ ︷︷ ︸
⊕

g0︷ ︸︸ ︷
UF (s)

The Heisenberg algebra -
the Tanaka symbol
of the contact distribution∆
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Symplectification procedure

Main Theorem on distributions with given Jacobi symbol

Let UT (B(s)) be the Tanaka universal algebraic prolongation of
B(s) (i.e. the maximal nondegenerate graded Lie algebra,
containing B(s) as its nonpositive part).

Theorem (Doubrov-Zelenko) If D is a distribution with Jacobi
symbol s, rankD = 2 or rankD is odd, and dimUT (B(s)) <∞,
then there exists a canonical frame for D on a manifold of
dimension equal to dimUT (B(s)).

In particular, the algebra of infinitesimal symmetries of a
distribution D with Jacobi symbol s is ≤ dimUT (B(s)).

Moreover, there exists a distribution with Jacobi symbol s s.t. its
algebra of infinitesimal symmetries is isomorphic to UT (B(s)) -
symplectically flat distribution with Jacobi symbol s.
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Statement of the problem
Review of Tanaka theory

Symplectification procedure

The case of rank 2 distributions of maximal class on
n-dimensional manifold

Jacobi curves are curves of complete flags consisting of all
osculating subspaces of a curve in projective space;

Only one Jacobi symbol s2
n is the right shift of the one row

Young diagram . . .︸ ︷︷ ︸
2(n−3) boxes

;

The flat curve with symbol s2
n is a curve of complete flags

consisting of all osculating subspaces of the rational normal
curve in P2n−7 (t → [1 : t : . . . : t2n−7));

UF (s) = is the image of the irreducible embedding of gl2 into
gl2n−6.
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Symmetry algebras for symplectically flat rank 2
distributions

n = 5
UT (B(s2

5 )) = G2 (Cartan, 1910)
n = 6 UT (B(s2

n)) = B(s2
n) - the semidirect sum of gl(2,R)

and (2n − 5)-dimensional Heisenberg algebra n2n−5.
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