## due February 18, 2016 at the beginning of class

1. Problem 23, page 52 of Warner.
2. Let $C \subset \mathbb{R}^{2}$ be the unit circle, and let $S \subset \mathbb{R}^{2}$ be the boundary of the square centered at the origin:

$$
S=\{(x, y): \max \{|x|,|y|\}=1\}
$$

Show that there is a homeomorphism $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $F(C)=S$, but there is no diffeomorphism with the same property (Hint: Consider what $F$ does to the tangent vector to a suitable curve in C).
3. (a) Consider $\mathbb{R}^{2}$ with the standard coordinates $(x, y)$. Let $V=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}$. Compute the coordinate representation of the vector field $V$ in polar coordinates.
(b) Given two vector fields in $\mathbb{R}^{3}$ (with standard coordinates $(x, y, z)$ )

$$
V_{1}=\frac{\partial}{\partial x}, \quad V_{2}:=\frac{\partial}{\partial y}+\left(x z+\frac{x^{3}}{3}+x y^{2}+x^{3} y^{2}\right) \frac{\partial}{\partial z}
$$

i. Calculate the following Lie brackets: $\left[V_{1}, V_{2}\right],\left[V_{1},\left[V_{1}, V_{2}\right]\right],\left[V_{2},\left[V_{1}, V_{2}\right]\right]$.
ii. Find all points $m \in \mathbb{R}^{3}$ for which $\left[V_{1}, V_{2}\right](m)$ is in the linear span of $V_{1}(m)$ and $V_{2}(m)$.
iii. Find all points $m \in \mathbb{R}^{3}$ for which both $\left[V_{1},\left[V_{1}, V_{2}\right]\right](m),\left[V_{2},\left[V_{1}, V_{2}\right]\right](m)$ are in in the linear span of $V_{1}(m)$ and $V_{2}(m)$.
4. Problem 9, page 51 of Warner.
5. Problem 12, page 51 of Warner concerning details for 1.40 (b) only.
6. (bonus question of $\mathbf{2 5}$ points) Problem 16 , page 51 of Warner.

