Homework assignment 2

Spring 2016 - MATH622

due February 18, 2016 at the beginning of class

- 1. Problem 23, page 52 of Warner.
- 2. Let $C \subset \mathbb{R}^2$ be the unit circle, and let $S \subset \mathbb{R}^2$ be the boundary of the square centered at the origin:

$$S = \left\{ (x, y) : \max\{|x|, |y|\} = 1 \right\}$$

Show that there is a homeomorphism $F : \mathbb{R}^2 \to \mathbb{R}^2$ such that F(C) = S, but there is no *diffeomorphism* with the same property (Hint: Consider what F does to the tangent vector to a suitable curve in C).

- 3. (a) Consider \mathbb{R}^2 with the standard coordinates (x, y). Let $V = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$. Compute the coordinate representation of the vector field V in polar coordinates.
 - (b) Given two vector fields in \mathbb{R}^3 (with standard coordinates (x, y, z))

$$V_1 = \frac{\partial}{\partial x}, \quad V_2 := \frac{\partial}{\partial y} + (xz + \frac{x^3}{3} + xy^2 + x^3y^2)\frac{\partial}{\partial z}.$$

- i. Calculate the following Lie brackets: $[V_1, V_2], [V_1, [V_1, V_2]], [V_2, [V_1, V_2]].$
- ii. Find all points $m \in \mathbb{R}^3$ for which $[V_1, V_2](m)$ is in the linear span of $V_1(m)$ and $V_2(m)$.
- iii. Find all points $m \in \mathbb{R}^3$ for which both $[V_1, [V_1, V_2]](m)$, $[V_2, [V_1, V_2]](m)$ are in the linear span of $V_1(m)$ and $V_2(m)$.
- 4. Problem 9, page 51 of Warner.
- 5. Problem 12, page 51 of Warner concerning details for 1.40 (b) only.
- 6. (bonus question of 25 points) Problem 16, page 51 of Warner.