due March 8, 2016 at the beginning of class

Solve any 5 out of 6 problems below, you can get up to 20 points bonus for solving all problems

1. Problem 10, page 51 of Warner.
2. Problem 18 , page 51 of Warner.
3. (Lagrange multiplier rule) Let M be a smooth manifold, $g: M \mapsto \mathbb{R}^{k}$ be a smooth map with components $g_{1}, g_{2}, \ldots, g_{k}$. Further, let c be a regular value of g with $P=g^{-1}(c)$ being non-empty. Let f be a smooth function on M, and suppose that $p \in P$ is a point at which f attains its maximal or minimal value among points in C. Show that there are real numbers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ such that

$$
d f_{p}=\left.\lambda_{1} d g_{1}\right|_{p}+\left.\lambda_{2} d g_{2}\right|_{p}+\ldots+\left.\lambda_{k} d g_{k}\right|_{p}
$$

4. Let U be the positive octant of \mathbb{R}^{3} (i.e. the subset of \mathbb{R}^{3}, where all coordinates are positive). Let D be the distribution on U spanned the vector fields

$$
X=y \frac{\partial}{\partial z}-z \frac{\partial}{\partial y}, \quad Y=z \frac{\partial}{\partial x}-x \frac{\partial}{\partial z}
$$

(a) Prove that D is involutive;
(b) Describe the maximal integral submanifolds of D.
5. Let D be the distribution on \mathbb{R}^{3} spanned by

$$
X=\frac{\partial}{\partial x}+y z \frac{\partial}{\partial z}, \quad Y=\frac{\partial}{\partial y}
$$

(a) Find an integral submanifold of D passing through the origin.
(b) Is D involutive? Explain your answer in light of part (a).
6. Let X_{1} and X_{2} be two commuting and linearly independent vector fields in a neighborhood of a point m of a d-dimensional manifold M, i.e. $\left[X_{1}, X_{2}\right]=0$ in a neighborhood of m and dimension of $\operatorname{span}\left(X_{1}(p), X_{2}(p)\right)$ is equal to 2 for any p in this neigborhood.
(a) Prove that there is a coordinate system $\left(U, x_{1}, \ldots, x_{d}\right)$ around m such that $X_{1}=\frac{\partial}{\partial x_{1}}$ and $X_{2}=\frac{\partial}{\partial x_{2}}$ on U.
(b) What will be a generalization of the statement in part (a) to a larger number of vector fields? Formulate this generalization and give the main ideas of the proof of it.

