Homework assignment 5

Spring 2016 - MATH622

due April 142016 at the beginning of class

In the problems 1 and 2 given a smooth map $g: M \mapsto N$ by $g^{*}: E^{*}(N) \mapsto E^{*}(M)$ one defines the pull-back of the differential forms from N to M. In the textbook this map is denoted by δg and it is introduced in subsection 2.22 page 68 . We prefer to use notation G^{*} as more common in the literature.

1. Define a 2 -form Ω in \mathbb{R}^{3} by

$$
\Omega=x d y \wedge d z+y d z \wedge d x+z d x \wedge d y
$$

(a) Compute Ω in spherical coordinates (ρ, φ, θ) defined by

$$
(x, y, z)=(\rho \sin \varphi \cos \theta, \rho \sin \varphi \sin \theta, \rho \cos \varphi) .
$$

(b) Compute $d \Omega$ in both Cartesian and spherical coordinates and verify that both expressions represent the same 3 -form.
(c) Compute the restriction $\left.\Omega\right|_{\mathbb{S}^{2}}=i^{*} \Omega$ using coordinates (φ, θ), on the open subset where the coordinates are defined (here \mathbb{S}^{2} denotes the unit sphere in \mathbb{R}^{3} and $i: \mathbb{S}^{2} \hookrightarrow \mathbb{R}^{3}$ is the inclusion map).
(d) Show that $\left.\Omega\right|_{\mathbb{S}^{2}}$ is nowhere zero.
2. Let $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be given by

$$
(x, y, z)=g(\theta, \varphi)=((\cos \varphi+2) \cos \theta,(\cos \varphi+2) \sin \theta, \sin \varphi) .
$$

Let $\omega=y d z \wedge d x$. Compute $g^{*}(d \omega)$ and $d \omega$, and verify by direct computation that $g^{*}(d \omega)=d\left(g^{*} \omega\right)$.
3. Problem 8, page 78 of Warner.
4. Problem 11, page 78 of Warner (postponed to tne next homework).
5. Problem 16, page 80 of Warner
6. bonus 20 points Problem 6, page 78 of Warner.

