Homework assignment 5

Spring 2016 - MATH622

due April 14 2016 at the beginning of class

In the problems 1 and 2 given a smooth map $g: M \mapsto N$ by $g^*: E^*(N) \mapsto E^*(M)$ one defines the pull-back of the differential forms from N to M. In the textbook this map is denoted by δg and it is introduced in subsection 2.22 page 68. We prefer to use notation G^* as more common in the literature.

1. Define a 2-form Ω in \mathbb{R}^3 by

$$\Omega = x dy \wedge dz + y dz \wedge dx + z dx \wedge dy$$

(a) Compute Ω in spherical coordinates (ρ, φ, θ) defined by

$$(x, y, z) = (\rho \sin \varphi \cos \theta, \rho \sin \varphi \sin \theta, \rho \cos \varphi).$$

- (b) Compute $d\Omega$ in both Cartesian and spherical coordinates and verify that both expressions represent the same 3-form.
- (c) Compute the restriction $\Omega|_{\mathbb{S}^2} = i^*\Omega$ using coordinates (φ, θ) , on the open subset where the coordinates are defined (here \mathbb{S}^2 denotes the unit sphere in \mathbb{R}^3 and $i : \mathbb{S}^2 \hookrightarrow \mathbb{R}^3$ is the inclusion map).
- (d) Show that $\Omega|_{\mathbb{S}^2}$ is nowhere zero.
- 2. Let $g: \mathbb{R}^2 \to \mathbb{R}^3$ be given by

$$(x, y, z) = g(\theta, \varphi) = \left((\cos \varphi + 2) \cos \theta, (\cos \varphi + 2) \sin \theta, \sin \varphi \right).$$

Let $\omega = y \, dz \wedge dx$. Compute $g^*(d\,\omega)$ and $d\omega$, and verify by direct computation that $g^*(d\omega) = d(g^*\omega)$.

- 3. Problem 8, page 78 of Warner.
- 4. Problem 11, page 78 of Warner (postponed to the next homework).
- 5. Problem 16, page 80 of Warner
- 6. bonus 20 points Problem 6, page 78 of Warner.