Homework assignment 6

due May 32016 at the beginning of class (I will give an extra class at this day)

Solve any 5 out of 6 first problems below, you also can get up to 140 points for solving all these 6 problems and the bonus problem 7

1. A volume form Ω on an n-dimensional manifold M is an everywhere nonvanishing smooth differential n form on M. Given a volume form Ω on M, one can define the divergence of a vector field X (w.r.t. the volume form) as the unique scalar-valued function, denoted by $\operatorname{div} X$, satisfying

$$
L_{X} \Omega=(\operatorname{div} X) \Omega .
$$

Prove that if $M=\mathbb{R}^{3}$ with coordinates (x, y, z) and $\Omega=d x \wedge d y \wedge d z$, then this coincides with the definition of the divergence of a vector field given in the Multivariable Calculus.
2. (a) Solve Problem 11 page 78;
(b) Let ω be a smooth 1-form on a smooth manifold M. A smooth positive function μ on some subset $U \subset M$ is called an integrating factor if $\mu \omega$ is exact on U, i.e. there exists a smooth function f on U such that $d f=\mu \omega$. If ω is nowhere-vanishing, show that ω admits an integrating factor in a neighborhood of each point if and only if $d \omega \wedge \omega=0$.
3. (a) Show that the Example 3.3 (i) on page 83 of Warner is a Lie group.
(b) Show that the Example 3.5 (e) on page 84 of Warner is a Lie algebra and it is isomorphic to the Lie algebra of 3×3 skew-symmetric matrices.
(c) Problem 17, page 135 of Warner.
4. Let G be Lie group
(a) Let $F: G \times G \rightarrow G$ denote the multiplication map. Identify the space $T_{(e, e)}(G \times G)$ with $T_{e} G \oplus T_{e} G$ by

$$
v \in T_{(e, e)}(G \times G) \mapsto\left(d \pi_{1}(v), d \pi_{2}(v)\right)
$$

where π_{1} and π_{2} are projections of $G \times G$ to the first and the second components, respectively. Show that $d F_{e}: T_{e} G \oplus T_{e} G \rightarrow T_{e} G$ is given by $d F(X, Y)=X+Y$.
(b) Let $J: G \rightarrow G$ denote the inversion map. Show that $d J_{e}: T_{e} G \rightarrow T_{e} G$. is given $d J_{e}(X)=-X$.
5. Problem 15 page 159 of Warner.
6. Problem 16 (a)-(c) page 159 of Warner.
7. (bonus 20 points) Prove that if G is a group and a differentiable manifold such that the multiplication map $G \times G \mapsto G$ define by $(\sigma, \tau) \mapsto \sigma \tau$ is smooth, then the map $\tau \mapsto \tau^{-1}$ is smooth (this shows that we can equivalently define a Lie group as a group and a differentiable manifold with a smooth multiplication).

