Darboux frame. Assume that k_{1} and k_{2} are principal curvatures on an oriented surface S and e_{3} is the fid of normal vectors to S. Assume that p_{0} is a non-umbilical point on S and e_{1} and e_{2} are two unit vector fields in a neighborhood U of p_{0} in S such that: they generate the principal directions corresponding to the principal curvatures k_{1} and k_{2} respectively and they constitute a positive frame of the tangent space at any point of U (the frame $\left.e_{1}, e_{2}, e_{3}\right)$ is called the Darboux frame). Let $F: U \rightarrow A S O(3)$ be defined as follows: $x \in U \mapsto\left(x, e_{1}(x), e_{2}(x), e_{3}(x)\right)$. Assume also that χ_{1} and χ_{2} are geodesic curvatures of the lines of curvatures tangent to e_{1} and e_{2} respectively.
a) Calculate $F^{*}\left(\omega_{1}^{2}\right)$ in terms of χ_{1} and χ_{2}, where ω_{1}^{2} is the corresponding entry of the Maurer-Cartan form of $A S 0(3)$.
b) Prove that $\left[e_{1}, e_{2}\right]=-\chi_{1} e_{1}+\chi_{2} e_{2}$.
c) Prove that the the functions k_{1}, k_{2}, χ_{1}, and χ_{2} satisfies the following 3 relations (which are exactlyof the Gauss and Codazzi equations in the Darboux frame):

$$
\begin{aligned}
& k_{1} k_{2}=e_{1}\left(\chi_{2}\right)+e_{2}\left(\chi_{1}\right)-\left(\chi_{1}^{2}+\chi_{2}^{2}\right) \\
& e_{1}\left(k_{2}\right)=\chi_{2}\left(k_{2}-k_{1}\right) \\
& e_{2}\left(k_{1}\right)=\chi_{1}\left(k_{1}-k_{2}\right)
\end{aligned}
$$

