Injectivity properties of pole placement maps of linear control systems

Igor Zelenko

Based on joint work with Frank Sottile and Yanhe Huang

Texas A\&M University, USA
AIMS 2016, Orlando, July 2

Pole placement map

$\Sigma=(A, B, C)$, where A, B, C are complex matrices of sizes $N \times N$, $N \times m$ and $p \times N$ such that the linear control system

$$
\begin{aligned}
& \dot{x}=A x+B u, \\
& y=C x \\
& x \in X=\mathbb{C}^{N}, y \in Y=\mathbb{C}^{p}, u \in U=\mathbb{C}^{m}
\end{aligned}
$$

is controllable and observable.
Transfer function $G(s)=C(s I-A)^{-1} B$.
Feedback $u=K y$, where K is a $m \times p$ matrix K, \rightarrow closed loop system $\dot{x}=(A+B K C) x$.

Pole placement map $F_{\Sigma}: \operatorname{Mat}_{m \times p} \rightarrow \mathbb{C}_{N}[s]$,

$$
F(K)(s)=\operatorname{det}(s I-A-B K C) .
$$

Pole placement map

$\Sigma=(A, B, C)$, where A, B, C are complex matrices of sizes $N \times N$, $N \times m$ and $p \times N$ such that the linear control system

$$
\begin{aligned}
& \dot{x}=A x+B u, \\
& y=C x \\
& x \in X=\mathbb{C}^{N}, y \in Y=\mathbb{C}^{p}, u \in U=\mathbb{C}^{m}
\end{aligned}
$$

is controllable and observable.
Transfer function $G(s)=C(s I-A)^{-1} B$.
Feedback $u=K y$, where K is a $m \times p$ matrix K, \rightarrow closed loop
system
Pole placement map F_{Σ}

$$
F(K)(s)=\operatorname{det}(s I-A-B K C) .
$$

Pole placement map

$\Sigma=(A, B, C)$, where A, B, C are complex matrices of sizes $N \times N$, $N \times m$ and $p \times N$ such that the linear control system

$$
\begin{aligned}
& \dot{x}=A x+B u, \\
& y=C x \\
& x \in X=\mathbb{C}^{N}, y \in Y=\mathbb{C}^{p}, u \in U=\mathbb{C}^{m}
\end{aligned}
$$

is controllable and observable.
Transfer function $G(s)=C(s I-A)^{-1} B$.
Feedback $u=K y$, where K is a $m \times p$ matrix K, \rightarrow closed loop

Pole placement map F_{Σ}

$$
F(K)(s)=\operatorname{det}(s I-A-B K C)
$$

Pole placement map

$\Sigma=(A, B, C)$, where A, B, C are complex matrices of sizes $N \times N$, $N \times m$ and $p \times N$ such that the linear control system

$$
\begin{aligned}
& \dot{x}=A x+B u, \\
& y=C x \\
& x \in X=\mathbb{C}^{N}, y \in Y=\mathbb{C}^{p}, u \in U=\mathbb{C}^{m}
\end{aligned}
$$

is controllable and observable.
Transfer function $G(s)=C(s I-A)^{-1} B$.
Feedback $u=K y$, where K is a $m \times p$ matrix K, \rightarrow closed loop system $\dot{x}=(A+B K C) x$.
Pole placement map F_{Σ}
$F(K)(s)=\operatorname{det}(s I-A-B K C)$.

Pole placement map

$\Sigma=(A, B, C)$, where A, B, C are complex matrices of sizes $N \times N$, $N \times m$ and $p \times N$ such that the linear control system

$$
\begin{aligned}
& \dot{x}=A x+B u, \\
& y=C x \\
& x \in X=\mathbb{C}^{N}, y \in Y=\mathbb{C}^{p}, u \in U=\mathbb{C}^{m}
\end{aligned}
$$

is controllable and observable.
Transfer function $G(s)=C(s I-A)^{-1} B$.
Feedback $u=K y$, where K is a $m \times p$ matrix K, \rightarrow closed loop system $\dot{x}=(A+B K C) x$.
Pole placement map $F_{\Sigma}: \operatorname{Mat}_{m \times p} \rightarrow \mathbb{C}_{N}[s]$,

$$
F(K)(s)=\operatorname{det}(s I-A-B K C)
$$

Statement of the problem

We assume that $N>m p$, so F is not onto (i.e. an arbitrary configuration of poles is not realizable).

Question Under what condition on the control system does the general polynomial in the image of F has at least two preimage (or , equivalently, general realizable configuration of poles is realized at least by two feedbacks).

Obvious examples:

- (Symmetric systems or state-feedback equivalent to them)
- (Skew-symmetric systems or state-feedback equivalent to them) N is even and for some J such that $J^{T}=-J$ and $J^{2}=-I$, we have $(A J)^{T}=-A J, C=-B^{T} J \Leftrightarrow G(s)$ is skew-symmetric. Then Are these the only examples in the case $N>m p$ when the degree of F is greater than 1?

Statement of the problem

We assume that $N>m p$, so F is not onto (i.e. an arbitrary configuration of poles is not realizable).

Question Under what condition on the control system does the general polynomial in the image of F has at least two preimage

Are these the only examples in the case $N>m p$ when the degree of F is greater than 1 ?

Statement of the problem

We assume that $N>m p$, so F is not onto (i.e. an arbitrary configuration of poles is not realizable).

Question Under what condition on the control system does the general polynomial in the image of F has at least two preimage (or , equivalently, general realizable configuration of poles is realized at least by two feedbacks).

Statement of the problem

We assume that $N>m p$, so F is not onto (i.e. an arbitrary configuration of poles is not realizable).

Question Under what condition on the control system does the general polynomial in the image of F has at least two preimage (or , equivalently, general realizable configuration of poles is realized at least by two feedbacks).

Obvious examples:

Statement of the problem

We assume that $N>m p$, so F is not onto (i.e. an arbitrary configuration of poles is not realizable).
Question Under what condition on the control system does the general polynomial in the image of F has at least two preimage (or , equivalently, general realizable configuration of poles is realized at least by two feedbacks).
Obvious examples:

- (Symmetric systems or state-feedback equivalent to them) $A=A^{T}, C=B^{T} \Leftrightarrow G(s)$ is symmetric.

Are these the only examples in the case $N>m p$ when the degree of is greater than 1 ?

Statement of the problem

We assume that $N>m p$, so F is not onto (i.e. an arbitrary configuration of poles is not realizable).
Question Under what condition on the control system does the general polynomial in the image of F has at least two preimage (or , equivalently, general realizable configuration of poles is realized at least by two feedbacks).
Obvious examples:

- (Symmetric systems or state-feedback equivalent to them) $A=A^{T}, C=B^{T} \Leftrightarrow G(s)$ is symmetric. Then $F(K)=F\left(K^{T}\right)$;

Are these the only examples in the case $N>m p$ when the degree of is greater than 1 ?

Statement of the problem

We assume that $N>m p$, so F is not onto (i.e. an arbitrary configuration of poles is not realizable).
Question Under what condition on the control system does the general polynomial in the image of F has at least two preimage (or , equivalently, general realizable configuration of poles is realized at least by two feedbacks).

Obvious examples:

- (Symmetric systems or state-feedback equivalent to them) $A=A^{T}, C=B^{T} \Leftrightarrow G(s)$ is symmetric. Then $F(K)=F\left(K^{T}\right)$;
- (Skew-symmetric systems or state-feedback equivalent to them) N is even and for some J such that $J^{T}=-J$ and $J^{2}=-I$, we have $(A J)^{T}=-A J, C=-B^{T} J \Leftrightarrow G(s)$ is skew-symmetric.

Statement of the problem

We assume that $N>m p$, so F is not onto (i.e. an arbitrary configuration of poles is not realizable).
Question Under what condition on the control system does the general polynomial in the image of F has at least two preimage (or , equivalently, general realizable configuration of poles is realized at least by two feedbacks).

Obvious examples:

- (Symmetric systems or state-feedback equivalent to them) $A=A^{T}, C=B^{T} \Leftrightarrow G(s)$ is symmetric. Then $F(K)=F\left(K^{T}\right)$;
- (Skew-symmetric systems or state-feedback equivalent to them) N is even and for some J such that $J^{T}=-J$ and $J^{2}=-I$, we have $(A J)^{T}=-A J, C=-B^{T} J \Leftrightarrow G(s)$ is skew-symmetric.Then $F(K)=F\left(-K^{T}\right)$;
Are these the only examples in the case $N>m p$ when the degree of
is greater than 1 ?

Statement of the problem

We assume that $N>m p$, so F is not onto (i.e. an arbitrary configuration of poles is not realizable).
Question Under what condition on the control system does the general polynomial in the image of F has at least two preimage (or , equivalently, general realizable configuration of poles is realized at least by two feedbacks).

Obvious examples:

- (Symmetric systems or state-feedback equivalent to them) $A=A^{T}, C=B^{T} \Leftrightarrow G(s)$ is symmetric. Then $F(K)=F\left(K^{T}\right)$;
- (Skew-symmetric systems or state-feedback equivalent to them) N is even and for some J such that $J^{T}=-J$ and $J^{2}=-I$, we have $(A J)^{T}=-A J, C=-B^{T} J \Leftrightarrow G(s)$ is skew-symmetric.Then $F(K)=F\left(-K^{T}\right) ;$
Are these the only examples in the case $N>m p$ when the degree of F is greater than 1 ?

Extending the pole placement map to the Grassmannian

The map $K \in \operatorname{Hom}(Y, U) \mapsto$ Graph K is the bijection onto the affine coordinate domain $(0 \times U)^{\pitchfork}$ of $\operatorname{Gr}_{p}(Y \times U)$ consisting of all p-dimensional subspaces transversal to $0 \times U$. Hence, the map F is

$F($ Graph $K):=F(K)$. It can be extended to the whole
 Grassmannian: Use the coprime factorization of the transfer function

and the extension to $\operatorname{Gr}_{p}(Y \times U)$ is given by

Extending the pole placement map to the Grassmannian

The map $K \in \operatorname{Hom}(Y, U) \mapsto$ Graph K is the bijection onto the affine coordinate domain $(0 \times U)^{\pitchfork}$ of $\operatorname{Gr}_{p}(Y \times U)$ consisting of all p-dimensional subspaces transversal to $0 \times U$. Hence, the map F is well defined on the affine coordinate domain of $\operatorname{Gr}_{p}(Y \times U)$: $F($ Graph $K):=F(K)$. It can be extended to the whole Grassmannian: Use the coprime factorization of the transfer function

Then $F(\operatorname{Graph} K)(s)=F(K)(s)=\operatorname{det}$
and the extension to $\mathrm{Gr}_{p}(Y \times U)$ is given by
where $L \in \operatorname{Gr}_{p}(Y \times U)$ is spanned by the last p columns of the matrix
in (1) and $[\cdot]$ is an equivalence class in the projective space.

Extending the pole placement map to the Grassmannian

The map $K \in \operatorname{Hom}(Y, U) \mapsto$ Graph K is the bijection onto the affine coordinate domain $(0 \times U)^{\pitchfork}$ of $\operatorname{Gr}_{p}(Y \times U)$ consisting of all p-dimensional subspaces transversal to $0 \times U$. Hence, the map F is well defined on the affine coordinate domain of $\operatorname{Gr}_{p}(Y \times U)$: $F($ Graph $K):=F(K)$. It can be extended to the whole

Grassmannian: Use the coprime factorization of the transfer function

Then $F(\operatorname{Graph} K)(s)=F(K)(s)=\operatorname{det}\left(\begin{array}{c}D \\ E(\\ \text { and the extension to } \operatorname{Gr}_{p}(Y \times U) \text { is given by }\end{array}\right.$
where $L \in \operatorname{Gr}_{p}(Y \times U)$ is spanned by the last p columns of the matrix
in (1) and $[\cdot]$ is an equivalence class in the projective space.

Extending the pole placement map to the Grassmannian

The map $K \in \operatorname{Hom}(Y, U) \mapsto$ Graph K is the bijection onto the affine coordinate domain $(0 \times U)^{\pitchfork}$ of $\operatorname{Gr}_{p}(Y \times U)$ consisting of all p-dimensional subspaces transversal to $0 \times U$. Hence, the map F is well defined on the affine coordinate domain of $\operatorname{Gr}_{p}(Y \times U)$: $F($ Graph $K):=F(K)$. It can be extended to the whole

Grassmannian: Use the coprime factorization of the transfer function $G(s)$,
Then $F($ Graph $K)(s)=F(K)(s)=\operatorname{det}\left(\begin{array}{l}D \\ E \\ \text { and the extension to } \operatorname{Gr}_{p}(Y \times U) \text { is given by }\end{array}\right.$

Extending the pole placement map to the Grassmannian

The map $K \in \operatorname{Hom}(Y, U) \mapsto$ Graph K is the bijection onto the affine coordinate domain $(0 \times U)^{\pitchfork}$ of $\operatorname{Gr}_{p}(Y \times U)$ consisting of all p-dimensional subspaces transversal to $0 \times U$. Hence, the map F is well defined on the affine coordinate domain of $\operatorname{Gr}_{p}(Y \times U)$: $F($ Graph $K):=F(K)$. It can be extended to the whole

Grassmannian: Use the coprime factorization of the transfer function $G(s), G(s)=C(s I-A)^{-1} B=E(s) D(s)^{-1}, \quad \operatorname{det} D(s)=\operatorname{det}(s I-A)$.

where

Extending the pole placement map to the Grassmannian

The map $K \in \operatorname{Hom}(Y, U) \mapsto$ Graph K is the bijection onto the affine coordinate domain $(0 \times U)^{\pitchfork}$ of $\operatorname{Gr}_{p}(Y \times U)$ consisting of all p-dimensional subspaces transversal to $0 \times U$. Hence, the map F is well defined on the affine coordinate domain of $\operatorname{Gr}_{p}(Y \times U)$: $F($ Graph $K):=F(K)$. It can be extended to the whole

Grassmannian: Use the coprime factorization of the transfer function $G(s), G(s)=C(s I-A)^{-1} B=E(s) D(s)^{-1}, \quad \operatorname{det} D(s)=\operatorname{det}(s I-A)$. Then $F(\operatorname{Graph} K)(s)=F(K)(s)=\operatorname{det}\left(\begin{array}{cc}D(s) & K \\ E(s) & I_{p}\end{array}\right)$
and the extension to $\operatorname{Gr}_{p}(Y \times U)$ is given by
where
in (1) and
is spanned by the last p columns of the matrix
is an equivalence class in the proiective space.

Extending the pole placement map to the Grassmannian

The map $K \in \operatorname{Hom}(Y, U) \mapsto \operatorname{Graph} K$ is the bijection onto the affine coordinate domain $(0 \times U)^{\pitchfork}$ of $\operatorname{Gr}_{p}(Y \times U)$ consisting of all p-dimensional subspaces transversal to $0 \times U$. Hence, the map F is well defined on the affine coordinate domain of $\operatorname{Gr}_{p}(Y \times U)$: $F($ Graph $K):=F(K)$. It can be extended to the whole

Grassmannian: Use the coprime factorization of the transfer function $G(s), G(s)=C(s I-A)^{-1} B=E(s) D(s)^{-1}, \quad \operatorname{det} D(s)=\operatorname{det}(s I-A)$. Then $F(\operatorname{Graph} K)(s)=F(K)(s)=\operatorname{det}\left(\begin{array}{cc}D(s) & K \\ E(s) & I_{p}\end{array}\right)$ and the extension to $\operatorname{Gr}_{p}(Y \times U)$ is given by

$$
F(L)=\left[\operatorname{det}\left(\begin{array}{cc}
D(s) & K_{1} \tag{1}\\
E(s) & K_{2}
\end{array}\right)\right]
$$

where $L \in \operatorname{Gr}_{p}(Y \times U)$ is spanned by the last p columns of the matrix in (1) and [.] is an equivalence class in the projective space.

More general point of view: central projections of Grassmannian

Let V be a complex vector space $(\operatorname{dim} V=m+p)$ and $\wedge^{p} V$ be the p th alternating tensor power of V.

Plücker embedding $\mathrm{Pl}: \mathrm{Gr}_{p}(V) \rightarrow \mathbb{P}\left(\wedge^{p} V\right)$

The image of Pl will be called the Grassmann variety and it will be also denoted by $\operatorname{Gr}_{p}(V)$
Given a subspace $X \subset \wedge^{p} V$, let $\hat{\pi}_{X}: \wedge^{p} V \rightarrow\left(\wedge^{p} V\right) / X$ be the canonical projection.
This induces a map $\pi_{X}: \mathbb{P} \wedge^{p} V \rightarrow \mathbb{P}\left(\Lambda^{p} V / X\right) \cup\{0\}$ (here
 finite and greater than 1?

More general point of view: central projections of Grassmannian

Let V be a complex vector space $(\operatorname{dim} V=m+p)$ and $\wedge^{p} V$ be the p th alternating tensor power of V.

Plücker embedding $\mathrm{Pl}: \operatorname{Gr}_{p}(V) \rightarrow \mathbb{P}\left(\wedge^{p} V\right)$:

More general point of view: central projections of Grassmannian

Let V be a complex vector space $(\operatorname{dim} V=m+p)$ and $\wedge^{p} V$ be the p th alternating tensor power of V.

Plücker embedding $\mathrm{Pl}: \operatorname{Gr}_{p}(V) \rightarrow \mathbb{P}\left(\wedge^{p} V\right)$:

$$
\operatorname{span}\left(v_{1}, \ldots, v_{p}\right) \rightarrow v_{1} \wedge v_{2} \ldots \wedge v_{p}
$$

The image of Pl will be called the Grassmann variety and it will be also denoted by $\operatorname{Gr}_{p}(V)$ Given a subspace $X \subset \Lambda^{p} V$, let $\pi X: \wedge^{p} V \rightarrow\left(\Lambda^{p} V\right) / X$ be the canonical projection.
This induces a map $\pi_{X}: \mathbb{P} \wedge^{p} V \rightarrow \mathbb{P}\left(\wedge^{p} V / X\right) \cup\{0\}$ (here
$\left.\pi_{X}^{-1}(\{0\})=\mathbb{P} X\right)$.
Restrict π_{X} to $\mathrm{Gr}_{p}(V)$-the central (or linear) projection of $\mathrm{Gr}_{p}(X)$ by X.
We are interested in the question when the degree of this restriction is finite and greater than 1?

More general point of view: central projections of Grassmannian

Let V be a complex vector space $(\operatorname{dim} V=m+p)$ and $\wedge^{p} V$ be the p th alternating tensor power of V.

Plücker embedding $\mathrm{Pl}: \operatorname{Gr}_{p}(V) \rightarrow \mathbb{P}\left(\wedge^{p} V\right)$:

$$
\operatorname{span}\left(v_{1}, \ldots, v_{p}\right) \rightarrow v_{1} \wedge v_{2} \ldots \wedge v_{p}
$$

The image of Pl will be called the Grassmann variety and it will be also denoted by $\operatorname{Gr}_{p}(V)$.

More general point of view: central projections of Grassmannian

Let V be a complex vector space $(\operatorname{dim} V=m+p)$ and $\wedge^{p} V$ be the p th alternating tensor power of V.

Plücker embedding $\mathrm{Pl}: \operatorname{Gr}_{p}(V) \rightarrow \mathbb{P}\left(\wedge^{p} V\right)$:

$$
\operatorname{span}\left(v_{1}, \ldots, v_{p}\right) \rightarrow v_{1} \wedge v_{2} \ldots \wedge v_{p}
$$

The image of Pl will be called the Grassmann variety and it will be also denoted by $\operatorname{Gr}_{p}(V)$.
Given a subspace $X \subset \wedge^{p} V$, let $\hat{\pi}_{X}: \wedge^{p} V \rightarrow\left(\wedge^{p} V\right) / X$ be the canonical projection.

More general point of view: central projections of Grassmannian

Let V be a complex vector space $(\operatorname{dim} V=m+p)$ and $\wedge^{p} V$ be the p th alternating tensor power of V.

Plücker embedding $\mathrm{Pl}: \operatorname{Gr}_{p}(V) \rightarrow \mathbb{P}\left(\wedge^{p} V\right)$:

$$
\operatorname{span}\left(v_{1}, \ldots, v_{p}\right) \rightarrow v_{1} \wedge v_{2} \ldots \wedge v_{p}
$$

The image of Pl will be called the Grassmann variety and it will be also denoted by $\mathrm{Gr}_{p}(V)$.
Given a subspace $X \subset \wedge^{p} V$, let $\hat{\pi}_{X}: \wedge^{p} V \rightarrow\left(\wedge^{p} V\right) / X$ be the canonical projection.
This induces a map $\pi_{X}: \mathbb{P} \wedge^{p} V \rightarrow \mathbb{P}\left(\wedge^{p} V / X\right) \cup\{0\}$ (here

Restrict π_{X} to $\operatorname{Gr}_{p}(V)$-the central (or linear) projection of $\operatorname{Gr}_{p}(X)$ by X.
We are interested in the question when the degree of this restriction is finite and greater than 1 ?

More general point of view: central projections of Grassmannian

Let V be a complex vector space $(\operatorname{dim} V=m+p)$ and $\wedge^{p} V$ be the p th alternating tensor power of V.

Plücker embedding $\mathrm{Pl}: \operatorname{Gr}_{p}(V) \rightarrow \mathbb{P}\left(\wedge^{p} V\right)$:

$$
\operatorname{span}\left(v_{1}, \ldots, v_{p}\right) \rightarrow v_{1} \wedge v_{2} \ldots \wedge v_{p}
$$

The image of Pl will be called the Grassmann variety and it will be also denoted by $\mathrm{Gr}_{p}(V)$.
Given a subspace $X \subset \wedge^{p} V$, let $\hat{\pi}_{X}: \wedge^{p} V \rightarrow\left(\wedge^{p} V\right) / X$ be the canonical projection.
This induces a map $\pi_{X}: \mathbb{P} \wedge^{p} V \rightarrow \mathbb{P}\left(\wedge^{p} V / X\right) \cup\{0\}$ (here $\left.\pi_{X}^{-1}(\{0\})=\mathbb{P} X\right)$.

We are interested in the question when the degree of this restriction is finite and greater than 1 ?

More general point of view: central projections of Grassmannian

Let V be a complex vector space $(\operatorname{dim} V=m+p)$ and $\wedge^{p} V$ be the p th alternating tensor power of V.

Plücker embedding $\mathrm{Pl}: \operatorname{Gr}_{p}(V) \rightarrow \mathbb{P}\left(\wedge^{p} V\right)$:

$$
\operatorname{span}\left(v_{1}, \ldots, v_{p}\right) \rightarrow v_{1} \wedge v_{2} \ldots \wedge v_{p}
$$

The image of Pl will be called the Grassmann variety and it will be also denoted by $\operatorname{Gr}_{p}(V)$.
Given a subspace $X \subset \wedge^{p} V$, let $\hat{\pi}_{X}: \wedge^{p} V \rightarrow\left(\wedge^{p} V\right) / X$ be the canonical projection.
This induces a map $\pi_{X}: \mathbb{P} \wedge^{p} V \rightarrow \mathbb{P}\left(\wedge^{p} V / X\right) \cup\{0\}$ (here $\left.\pi_{X}^{-1}(\{0\})=\mathbb{P} X\right)$.
Restrict π_{X} to $\operatorname{Gr}_{p}(V)$-the central (or linear) projection of $\operatorname{Gr}_{p}(X)$ by X. We are interested in the question when the degree of this restriction is finite and greater than 1?

More general point of view: central projections of Grassmannian

Let V be a complex vector space $(\operatorname{dim} V=m+p)$ and $\wedge^{p} V$ be the p th alternating tensor power of V.

Plücker embedding $\mathrm{Pl}: \operatorname{Gr}_{p}(V) \rightarrow \mathbb{P}\left(\wedge^{p} V\right)$:

$$
\operatorname{span}\left(v_{1}, \ldots, v_{p}\right) \rightarrow v_{1} \wedge v_{2} \ldots \wedge v_{p}
$$

The image of Pl will be called the Grassmann variety and it will be also denoted by $\operatorname{Gr}_{p}(V)$.
Given a subspace $X \subset \wedge^{p} V$, let $\hat{\pi}_{X}: \wedge^{p} V \rightarrow\left(\wedge^{p} V\right) / X$ be the canonical projection.
This induces a map $\pi_{X}: \mathbb{P} \wedge^{p} V \rightarrow \mathbb{P}\left(\wedge^{p} V / X\right) \cup\{0\}$ (here $\left.\pi_{X}^{-1}(\{0\})=\mathbb{P} X\right)$.
Restrict π_{X} to $\operatorname{Gr}_{p}(V)$-the central (or linear) projection of $\operatorname{Gr}_{p}(X)$ by X. We are interested in the question when the degree of this restriction is finite and greater than 1?

Pole placement map via a central projection

$$
F(L)=\left[\operatorname{det}\left(\begin{array}{cc}
D(s) & K_{1} \\
E(s) & K_{2}
\end{array}\right)\right]
$$

where $L \in \operatorname{Gr}_{p}(Y \times U)$ is spanned by the last p columns of the matrix.
Taking the span of the first m columns of the same matrix at each $s \in \mathbb{C}$, we get a curve $s \mapsto \Gamma(s)$, the Hermann-Martin curve of our control system, in $\operatorname{Gr}_{m}(Y \times U)$. The transfer function $G(s)$ is the coordinate representation of the Hermann-Martin curve in an affine chart of $\operatorname{Gr}_{m}(Y \times U)$.

The pole placement map F is equivalent to the central projection $\pi_{X_{\Gamma}}$ on $\operatorname{Gr}_{m}\left((Y \times U)^{*}\right)$: There is a bijection L between the image of F and the image of πx_{Γ} such that $L \circ F(\Lambda)=\pi x_{\Gamma}\left(\Lambda^{\perp}\right)$.

Pole placement map via a central projection

$$
F(L)=\left[\operatorname{det}\left(\begin{array}{cc}
D(s) & K_{1} \\
E(s) & K_{2}
\end{array}\right)\right]
$$

where $L \in \operatorname{Gr}_{p}(Y \times U)$ is spanned by the last p columns of the matrix.
Taking the span of the first m columns of the same matrix at each $s \in \mathbb{C}$, we get a curve $s \mapsto \Gamma(s)$, the Hermann-Martin curve of our control system, in $\operatorname{Gr}_{m}(Y \times U)$.
coordinate representation of the Hermann-Martin curve in an affine chart of $\operatorname{Gr}_{m}(Y \times U)$.

The pole placement map F is equivalent to the central projection $\pi_{X_{I}}$ on $\operatorname{Gr}_{m}\left((Y \times U)^{*}\right)$: There is a bijection L between the image of F and the image of $\pi_{X_{\Gamma}}$ such that $L \circ F(\Lambda)=\pi_{X_{\Gamma}}\left(\Lambda^{\perp}\right)$.

Pole placement map via a central projection

$$
F(L)=\left[\operatorname{det}\left(\begin{array}{cc}
D(s) & K_{1} \\
E(s) & K_{2}
\end{array}\right)\right]
$$

where $L \in \operatorname{Gr}_{p}(Y \times U)$ is spanned by the last p columns of the matrix.
Taking the span of the first m columns of the same matrix at each $s \in \mathbb{C}$, we get a curve $s \mapsto \Gamma(s)$, the Hermann-Martin curve of our control system, in $\operatorname{Gr}_{m}(Y \times U)$. The transfer function $G(s)$ is the coordinate representation of the Hermann-Martin curve in an affine chart of $\operatorname{Gr}_{m}(Y \times U)$.

The pole placement map F is equivalent to the central projection $\pi_{X_{\Gamma}}$
on $\operatorname{Gr}_{m}\left((Y \times U)^{*}\right)$: There is a bijection L between the image of F and the image of $\pi_{X_{\Gamma}}$ such that $L \circ F(\Lambda)=\pi_{X_{\Gamma}}\left(\Lambda^{\perp}\right)$.

Pole placement map via a central projection

$$
F(L)=\left[\operatorname{det}\left(\begin{array}{cc}
D(s) & K_{1} \\
E(s) & K_{2}
\end{array}\right)\right]
$$

where $L \in \operatorname{Gr}_{p}(Y \times U)$ is spanned by the last p columns of the matrix.
Taking the span of the first m columns of the same matrix at each $s \in \mathbb{C}$, we get a curve $s \mapsto \Gamma(s)$, the Hermann-Martin curve of our control system, in $\operatorname{Gr}_{m}(Y \times U)$. The transfer function $G(s)$ is the coordinate representation of the Hermann-Martin curve in an affine chart of $\operatorname{Gr}_{m}(Y \times U)$.

$$
\left.S_{\Gamma}:=\operatorname{span}_{s \in \mathbb{C}}\{\operatorname{Pl}(\Gamma(s))\} \subset \wedge^{m}(Y \times U)\right\}
$$

The pole placement map F is equivalent to the central projection $\pi_{X_{\Gamma}}$
on $\operatorname{Gr}_{m}\left((Y \times U)^{*}\right)$: There is a bijection L between the image of F and the image of $\pi_{X_{\Gamma}}$ such that $L \circ F(\Lambda)=\pi_{X_{\Gamma}}\left(\Lambda^{\perp}\right)$.

Pole placement map via a central projection

$$
F(L)=\left[\operatorname{det}\left(\begin{array}{cc}
D(s) & K_{1} \\
E(s) & K_{2}
\end{array}\right)\right]
$$

where $L \in \operatorname{Gr}_{p}(Y \times U)$ is spanned by the last p columns of the matrix.
Taking the span of the first m columns of the same matrix at each $s \in \mathbb{C}$, we get a curve $s \mapsto \Gamma(s)$, the Hermann-Martin curve of our control system, in $\operatorname{Gr}_{m}(Y \times U)$. The transfer function $G(s)$ is the coordinate representation of the Hermann-Martin curve in an affine chart of $\operatorname{Gr}_{m}(Y \times U)$.

$$
\begin{gathered}
\left.S_{\Gamma}:=\operatorname{span}_{s \in \mathbb{C}}\{\operatorname{Pl}(\Gamma(s))\} \subset \wedge^{m}(Y \times U)\right\} \\
X_{\Gamma}:=\left(S_{\Gamma}\right)^{\perp}=\left\{\omega \in \wedge^{m}(Y \times U)^{*}:\left.\omega\right|_{S_{\Gamma}}=0\right\}
\end{gathered}
$$

The pole placement map F is equivalent to the central projection $\pi_{X_{\Gamma}}$
on $\operatorname{Gr}_{m}\left((Y \times U)^{*}\right)$: There is a bijection L between the image of F and the image of $\pi_{X_{\Gamma}}$ such that $L \circ F(\Lambda)=\pi_{X_{\Gamma}}\left(\Lambda^{\perp}\right)$.

Pole placement map via a central projection

$$
F(L)=\left[\operatorname{det}\left(\begin{array}{ll}
D(s) & K_{1} \\
E(s) & K_{2}
\end{array}\right)\right]
$$

where $L \in \operatorname{Gr}_{p}(Y \times U)$ is spanned by the last p columns of the matrix.
Taking the span of the first m columns of the same matrix at each $s \in \mathbb{C}$, we get a curve $s \mapsto \Gamma(s)$, the Hermann-Martin curve of our control system, in $\operatorname{Gr}_{m}(Y \times U)$. The transfer function $G(s)$ is the coordinate representation of the Hermann-Martin curve in an affine chart of $\operatorname{Gr}_{m}(Y \times U)$.

$$
\begin{gathered}
\left.S_{\Gamma}:=\operatorname{span}_{s \in \mathbb{C}}\{\operatorname{Pl}(\Gamma(s))\} \subset \wedge^{m}(Y \times U)\right\} \\
X_{\Gamma}:=\left(S_{\Gamma}\right)^{\perp}=\left\{\omega \in \wedge^{m}(Y \times U)^{*}:\left.\omega\right|_{S_{\Gamma}}=0\right\}
\end{gathered}
$$

The pole placement map F is equivalent to the central projection $\pi_{X_{\Gamma}}$ on $\operatorname{Gr}_{m}\left((Y \times U)^{*}\right)$:

Pole placement map via a central projection

$$
F(L)=\left[\operatorname{det}\left(\begin{array}{cc}
D(s) & K_{1} \\
E(s) & K_{2}
\end{array}\right)\right]
$$

where $L \in \operatorname{Gr}_{p}(Y \times U)$ is spanned by the last p columns of the matrix.
Taking the span of the first m columns of the same matrix at each $s \in \mathbb{C}$, we get a curve $s \mapsto \Gamma(s)$, the Hermann-Martin curve of our control system, in $\operatorname{Gr}_{m}(Y \times U)$. The transfer function $G(s)$ is the coordinate representation of the Hermann-Martin curve in an affine chart of $\operatorname{Gr}_{m}(Y \times U)$.

$$
\begin{gathered}
\left.S_{\Gamma}:=\operatorname{span}_{s \in \mathbb{C}}\{\operatorname{Pl}(\Gamma(s))\} \subset \wedge^{m}(Y \times U)\right\} \\
X_{\Gamma}:=\left(S_{\Gamma}\right)^{\perp}=\left\{\omega \in \wedge^{m}(Y \times U)^{*}:\left.\omega\right|_{S_{\Gamma}}=0\right\}
\end{gathered}
$$

The pole placement map F is equivalent to the central projection $\pi_{X_{\Gamma}}$ on $\operatorname{Gr}_{m}\left((Y \times U)^{*}\right)$: There is a bijection L between the image of F and the image of $\pi_{X_{\Gamma}}$ such that $L \circ F(\Lambda)=\pi_{X_{\Gamma}}\left(\Lambda^{\perp}\right)$.

Some general facts on central projections

Let $X \subset \wedge^{p} V, \operatorname{dim} V=m+p$.
If $\operatorname{codim} X=\operatorname{dim} \operatorname{Gr}_{p}(V)+1=m p+1$ and $\mathbb{P} X \cap \operatorname{Gr}_{p}(V)=\emptyset$, then the map π_{X} is finite and the degree of the map π_{X} is equal to
$\frac{1!2!\ldots(p-1)!\cdot(m p)!}{m!(m+1)!(m+p-1)!}$ (Schubert, 1886)
If codim $X>m p+1$, then for generic X the degree of the map π_{X} is equal to 1 .

For which X with codim $X>m p+1$ the degree of the map π_{X} is finite and greater than 1?

Note that if $\mathbb{P} X \cap \operatorname{Gr}_{p}(V)=\emptyset$ then the map π_{X} is finite.

Some general facts on central projections

Let $X \subset \wedge^{p} V, \operatorname{dim} V=m+p$.
If $\operatorname{codim} X=\operatorname{dim} \operatorname{Gr}_{p}(V)+1=m p+1$ and $\mathbb{P} X \cap \operatorname{Gr}_{p}(V)=\emptyset$, then the map π_{X} is finite and the degree of the map π_{X} is equal to
$\frac{1!2!\ldots(p-1)!\cdot(m p)!}{m!(m+1)!\ldots(m+p-1)!}$ (Schubert, 1886)
If codim $X>m p+1$, then for generic X the degree of the map π_{X} is
equal to 1 .
For which X with codim $X>m p+1$ the degree of the map π_{X} is finite and greater than 1?

Note that if $\mathbb{P} X \cap \operatorname{Gr}_{p}(V)=\emptyset$ then the map π_{X} is finite.

Some general facts on central projections

Let $X \subset \wedge^{p} V, \operatorname{dim} V=m+p$.
If $\operatorname{codim} X=\operatorname{dim} \operatorname{Gr}_{p}(V)+1=m p+1$ and $\mathbb{P} X \cap \operatorname{Gr}_{p}(V)=\emptyset$, then the map π_{X} is finite and the degree of the map π_{X} is equal to
$\frac{1!2!\ldots(p-1)!\cdot(m p)!}{m!(m+1)!\ldots(m+p-1)!}$ (Schubert, 1886)
If codim $X>m p+1$, then for generic X the degree of the map π_{X} is equal to 1 .

For which X with codim $X>m p+1$ the degree of the map π_{X} is finite and greater than 1 ?

Note that if $\mathbb{P} X \cap \operatorname{Gr}_{p}(V)=\emptyset$ then the map π_{X} is finite.

Some general facts on central projections

Let $X \subset \wedge^{p} V, \operatorname{dim} V=m+p$.
If $\operatorname{codim} X=\operatorname{dim} \operatorname{Gr}_{p}(V)+1=m p+1$ and $\mathbb{P} X \cap \operatorname{Gr}_{p}(V)=\emptyset$, then the map π_{X} is finite and the degree of the map π_{X} is equal to
$\frac{1!2!\ldots(p-1)!\cdot(m p)!}{m!(m+1)!\ldots(m+p-1)!}$ (Schubert, 1886)
If $\operatorname{codim} X>m p+1$, then for generic X the degree of the map π_{X} is equal to 1 .

For which X with codim $X>m p+1$ the degree of the map π_{X} is finite and greater than 1 ?

Note that if $\mathbb{P} X \cap \operatorname{Gr}_{p}(V)=\emptyset$ then the map π_{X} is finite.

Some general facts on central projections

Let $X \subset \wedge^{p} V, \operatorname{dim} V=m+p$.
If $\operatorname{codim} X=\operatorname{dim} \operatorname{Gr}_{p}(V)+1=m p+1$ and $\mathbb{P} X \cap \operatorname{Gr}_{p}(V)=\emptyset$, then the map π_{X} is finite and the degree of the map π_{X} is equal to
$\frac{1!2!\ldots(p-1)!\cdot(m p)!}{m!(m+1)!\ldots(m+p-1)!}$ (Schubert, 1886)
If $\operatorname{codim} X>m p+1$, then for generic X the degree of the map π_{X} is equal to 1 .

For which X with codim $X>m p+1$ the degree of the map π_{X} is finite and greater than 1 ?

Note that if $\mathbb{P} X \cap \operatorname{Gr}_{p}(V)=\emptyset$ then the map π_{X} is finite.

Central projections induced by finite order linear maps

First, we want to characterize all $X \subset \wedge^{p} V$ such that there exists a nontrivial finite order linear automorphism \widehat{A} of $\wedge^{p} V$ with the induced automorphism A of the projective space $\mathbb{P} \wedge^{p} V$ satisfying

(1) A preserves the $\mathrm{Grassmannian} \operatorname{Gr}_{p}(V)$, i.e. $A\left(\operatorname{Gr}_{p}(V)\right) \subset \operatorname{Gr}_{p}(V)$;

[^0]
Central projections induced by finite order linear maps

First, we want to characterize all $X \subset \wedge^{p} V$ such that there exists a nontrivial finite order linear automorphism \widehat{A} of $\wedge^{p} V$ with the induced automorphism A of the projective space $\mathbb{P} \wedge^{p} V$ satisfying
(1) A preserves the $\operatorname{Grassmannian}^{\operatorname{Gr}_{p}(V) \text {, }}$
(2) A preserves t
$y \in \operatorname{Gr}_{p}(V) \Rightarrow$
Ne say that such

We say that such X is induced by a finite order linear automorphism.

Central projections induced by finite order linear maps

First, we want to characterize all $X \subset \wedge^{p} V$ such that there exists a nontrivial finite order linear automorphism \widehat{A} of $\wedge^{p} V$ with the induced automorphism A of the projective space $\mathbb{P} \wedge^{p} V$ satisfying
(1) A preserves the $\operatorname{Grassmannian} \operatorname{Gr}_{p}(V)$, i.e. $A\left(\operatorname{Gr}_{p}(V)\right) \subset \operatorname{Gr}_{p}(V)$;
(3) A preserves the fibers of the map π_{X}, i.e. $\pi_{X}(A y)=\pi_{X}(y)$ for all

We say that such X is induced by a finite order linear automorphism.

Central projections induced by finite order linear maps

First, we want to characterize all $X \subset \wedge^{p} V$ such that there exists a nontrivial finite order linear automorphism \widehat{A} of $\wedge^{p} V$ with the induced automorphism A of the projective space $\mathbb{P} \wedge^{p} V$ satisfying
(1) A preserves the $\operatorname{Grassmannian} \operatorname{Gr}_{p}(V)$, i.e. $A\left(\operatorname{Gr}_{p}(V)\right) \subset \operatorname{Gr}_{p}(V)$;
(2) A preserves the fibers of the map π_{X},

We say that such X is induced by a finite order linear automorphism.

Central projections induced by finite order linear maps

First, we want to characterize all $X \subset \wedge^{p} V$ such that there exists a nontrivial finite order linear automorphism \widehat{A} of $\wedge^{p} V$ with the induced automorphism A of the projective space $\mathbb{P} \wedge^{p} V$ satisfying

(2) A preserves the fibers of the map π_{X}, i.e. $\pi_{X}(A y)=\pi_{X}(y)$ for all $y \in \operatorname{Gr}_{p}(V)$

We say that such X is induced by a finite order linear automorphism.

Central projections induced by finite order linear maps

First, we want to characterize all $X \subset \wedge^{p} V$ such that there exists a nontrivial finite order linear automorphism \widehat{A} of $\wedge^{p} V$ with the induced automorphism A of the projective space $\mathbb{P} \wedge^{p} V$ satisfying

(2) A preserves the fibers of the map π_{X}, i.e. $\pi_{X}(A y)=\pi_{X}(y)$ for all $y \in \operatorname{Gr}_{p}(V) \Rightarrow \operatorname{deg} \pi_{X}>1$.

We say that such X is induced by a finite order linear automorphism.

Central projections induced by finite order linear maps

First, we want to characterize all $X \subset \wedge^{p} V$ such that there exists a nontrivial finite order linear automorphism \widehat{A} of $\wedge^{p} V$ with the induced automorphism A of the projective space $\mathbb{P} \wedge^{p} V$ satisfying
(1) A preserves the $\operatorname{Grassmannian} \operatorname{Gr}_{p}(V)$, i.e. $A\left(\operatorname{Gr}_{p}(V)\right) \subset \operatorname{Gr}_{p}(V)$;
(2) A preserves the fibers of the map π_{X}, i.e. $\pi_{X}(A y)=\pi_{X}(y)$ for all $y \in \operatorname{Gr}_{p}(V) \Rightarrow \operatorname{deg} \pi_{X}>1$.

We say that such X is induced by a finite order linear automorphism.

Central projections induced by linear automorphisms (continued)

Proposition (F. Sottile, Y. Huang, I.Z)
If $X \subset \wedge^{p} V$ is induced by a finite order linear automorphism \widehat{A}, then X contains all eigenspaces of A except one.

Theorem (Wei-Liang Chow 1949)
Consider an automorphism \widehat{A} of $\wedge^{p} V$ such that the corresponding automorphism A of the projective space $\mathbb{P} \wedge^{p} V$ preserves the Grassmannian $G_{p}(V)$. Then
(1) either A is induced by a linear automorphism of V,
(2) or, in the case $p=m$, there exists a nondegenerate bilinear form
ω on V such that A is induced by an operation of taking an
ω-orthogonal complement,
$L \in \operatorname{Gr}_{p}(V) \mapsto L^{\omega}:=\{v \in L, \omega(v, \ell)=0 \forall \ell \in L\}$.

Central projections induced by linear automorphisms (continued)

Proposition (F. Sottile, Y. Huang, I.Z)
If $X \subset \wedge^{p} V$ is induced by a finite order linear automorphism \widehat{A}, then X contains all eigenspaces of A except one.

Theorem (Wei-Liang Chow 1949)
Consider an automorphism \widehat{A} of $\wedge^{p} V$ such that the corresponding automorphism A of the projective space $\mathbb{P} \wedge^{p} V$ preserves the Grassmannian $G_{p}(V)$. Then

Central projections induced by linear automorphisms (continued)

Proposition (F. Sottile, Y. Huang, I.Z)
If $X \subset \wedge^{p} V$ is induced by a finite order linear automorphism \widehat{A}, then X contains all eigenspaces of A except one.

Theorem (Wei-Liang Chow 1949)
Consider an automorphism \widehat{A} of $\wedge^{p} V$ such that the corresponding automorphism A of the projective space $\mathbb{P} \wedge^{p} V$ preserves the Grassmannian $G_{p}(V)$. Then
(1) either A is induced by a linear automorphism of V,

Central projections induced by linear automorphisms (continued)

Proposition (F. Sottile, Y. Huang, I.Z)
If $X \subset \wedge^{p} V$ is induced by a finite order linear automorphism \widehat{A}, then X contains all eigenspaces of A except one.

Theorem (Wei-Liang Chow 1949)

Consider an automorphism \widehat{A} of $\wedge^{p} V$ such that the corresponding automorphism A of the projective space $\mathbb{P} \wedge^{p} V$ preserves the Grassmannian $G_{p}(V)$. Then
(1) either A is induced by a linear automorphism of V,
(3) or, in the case $p=m$, there exists a nondegenerate bilinear form ω on V such that A is induced by an operation of taking an ω-orthogonal complement,

Central projections induced by linear automorphisms (continued)

Proposition (F. Sottile, Y. Huang, I.Z)
If $X \subset \wedge^{p} V$ is induced by a finite order linear automorphism \widehat{A}, then X contains all eigenspaces of A except one.

Theorem (Wei-Liang Chow 1949)

Consider an automorphism \widehat{A} of $\wedge^{p} V$ such that the corresponding automorphism A of the projective space $\mathbb{P} \wedge^{p} V$ preserves the Grassmannian $G_{p}(V)$. Then
(1) either A is induced by a linear automorphism of V,
(3) or, in the case $p=m$, there exists a nondegenerate bilinear form ω on V such that A is induced by an operation of taking an ω-orthogonal complement,
$L \in \operatorname{Gr}_{p}(V) \mapsto L^{\omega}:=\{v \in L, \omega(v, \ell)=0 \forall \ell \in L\}$.

What special in a Lagrangian involution?

If $X \subset \wedge^{p} V$ is induced by a finite order linear automorphism of $\wedge^{p} V$ of Chow's type 2, then X is also induced by order 2 linear automorphism of Chow's type 2 such that the corresponding bilinear form is either symmetric or skew-symmetric (symplectic).
Note that the pole placement map for a symmetric control systems
correspond to the case of symplectic form and for a skew-symmetric control system corresponds to a symmetric form.

Theorem (F. Sottile, Y. Huang, I.Z.)
If $\mathbb{P} X \cap \operatorname{Gr}_{p}(V)=\emptyset$ and X is induced by a nontrivial linear
automorphism of $\wedge^{p} V$, then $p=m$ and X is induced by a linear
automorphism of Chow's type 2 corresponding to a symplectic form on
V (i.e., to a Lagrangian involution).

What special in a Lagrangian involution?

If $X \subset \wedge^{p} V$ is induced by a finite order linear automorphism of $\wedge^{p} V$ of Chow's type 2, then X is also induced by order 2 linear automorphism of Chow's type 2 such that the corresponding bilinear form is either symmetric or skew-symmetric (symplectic).
Note that the pole placement map for a symmetric control systems correspond to the case of symplectic form and for a skew-symmetric control system corresponds to a symmetric form.

What special in a Lagrangian involution?

If $X \subset \wedge^{p} V$ is induced by a finite order linear automorphism of $\wedge^{p} V$ of Chow's type 2, then X is also induced by order 2 linear automorphism of Chow's type 2 such that the corresponding bilinear form is either symmetric or skew-symmetric (symplectic).
Note that the pole placement map for a symmetric control systems correspond to the case of symplectic form and for a skew-symmetric control system corresponds to a symmetric form.

Theorem (F. Sottile, Y. Huang, I.Z.)
If $\mathbb{P} X \cap \operatorname{Gr}_{p}(V)=\emptyset$ and X is induced by a nontrivial linear automorphism of $\wedge^{p} V$, then $p=m$ and X is induced by a linear automorphism of Chow's type 2 corresponding to a symplectic form on V (i.e., to a Lagrangian involution).

What is special in Lagrangian involution (continued)

Theorem (F. Sottile, Y. Huang, I.Z.)
If $\mathbb{P} X \cap \operatorname{Gr}_{p}(V)=\emptyset$, codim $X>m p+1$, and the degree of π_{X} is 2 , then X is induced by a Lagrangian involution with respect to some symplectic form ω on V.

Theorem (F. Sottile, Y. Huang, I.Z.)
(1) If $m=p=2$ and $\mathbb{P} X \cap \operatorname{Gr}_{2}(V)=\emptyset$, then the degree of π_{X} is greater than 1 if and only if X is induced by a Lagrangian involution with respect to some symplectic form ω on V
2) If $m=p=3, \mathbb{P} X \cap \operatorname{Gr}_{3}(V)=\emptyset$, and $\operatorname{dim} X \leq 5$, then the degree of π_{X} is equal to 1 ;
(3) If $m=p=3, \mathbb{P} X \cap \operatorname{Gr}_{3}(V)=\emptyset$, and $\operatorname{dim} X=6$ (which is the minimal possible dimension of X induced by a Lagrangian involution), then the degree of π_{X} is greater than 1 if and only if X is induced by a Lagrangian involution with respect to some symplectic form ω on V

What is special in Lagrangian involution (continued)

Theorem (F. Sottile, Y. Huang, I.Z.)
If $\mathbb{P} X \cap \operatorname{Gr}_{p}(V)=\emptyset$, codim $X>m p+1$, and the degree of π_{X} is 2 , then X is induced by a Lagrangian involution with respect to some symplectic form ω on V.

Theorem (F. Sottile, Y. Huang, I.Z.)
(1) If $m=p=2$ and $\mathbb{P} X \cap \operatorname{Gr}_{2}(V)=\emptyset$, then the degree of π_{X} is greater than 1 if and only if X is induced by a Lagrangian involution with respect to some symplectic form ω on V;

。 \square is induced by a Lagrangian involution with respect to some symplectic form

What is special in Lagrangian involution (continued)

Theorem (F. Sottile, Y. Huang, I.Z.)
If $\mathbb{P} X \cap \operatorname{Gr}_{p}(V)=\emptyset$, codim $X>m p+1$, and the degree of π_{X} is 2 , then X is induced by a Lagrangian involution with respect to some symplectic form ω on V.

Theorem (F. Sottile, Y. Huang, I.Z.)
(1) If $m=p=2$ and $\mathbb{P} X \cap \operatorname{Gr}_{2}(V)=\emptyset$, then the degree of π_{X} is greater than 1 if and only if X is induced by a Lagrangian involution with respect to some symplectic form ω on V;
(2) If $m=p=3, \mathbb{P} X \cap \operatorname{Gr}_{3}(V)=\emptyset$, and $\operatorname{dim} X \leq 5$, then the degree of π_{X} is equal to 1 ;

。 \square symplectic form

What is special in Lagrangian involution (continued)

Theorem (F. Sottile, Y. Huang, I.Z.) If $\mathbb{P} X \cap \operatorname{Gr}_{p}(V)=\emptyset$, codim $X>m p+1$, and the degree of π_{X} is 2 , then X is induced by a Lagrangian involution with respect to some symplectic form ω on V.

Theorem (F. Sottile, Y. Huang, I.Z.)
(1) If $m=p=2$ and $\mathbb{P} X \cap \operatorname{Gr}_{2}(V)=\emptyset$, then the degree of π_{X} is greater than 1 if and only if X is induced by a Lagrangian involution with respect to some symplectic form ω on V;
(2) If $m=p=3, \mathbb{P} X \cap \operatorname{Gr}_{3}(V)=\emptyset$, and $\operatorname{dim} X \leq 5$, then the degree of π_{X} is equal to 1 ;
(3) If $m=p=3, \mathbb{P} X \cap \operatorname{Gr}_{3}(V)=\emptyset$, and $\operatorname{dim} X=6$ (which is the minimal possible dimension of X induced by a Lagrangian involution), then the degree of π_{X} is greater than 1 if and only if X is induced by a Lagrangian involution with respect to some symplectic form ω on V.

Applications to pole placement map

Consider the linear control system Σ as before , $V=(Y \times U)^{*}$.
Theorem (F. Sottile, Y. Huang, I.Z.)
If $X_{\Sigma} \cap \operatorname{Gr}_{m}(V)=\emptyset$, codim $X_{\Sigma}>m p+1$, and the degree of the pole placement map is 2 , then the control system is state-feedback equivalent to a symmetric control system.

Theorem (F. Sottile.
\square placement map is greater than 1 if and only the control system is state-feedback equivalent to a symmetric control system,
(2) If $m=p=3, \mathbb{P} X_{\Sigma} \cap \operatorname{Gr}_{3}(V)=\emptyset$, and $\operatorname{dim} X \leq 5$, then the degree
of the pole placement map is 1 ;If $m=p=3, \mathbb{P}_{\Sigma} \cap \operatorname{Gr}_{3}(V)=\emptyset$, and $\operatorname{dim} X=6$, then the degree
of the pole placement map is greater than 1 if and only if the
control system is state-feedback equivalent to a symmetric control system.

Applications to pole placement map

Consider the linear control system Σ as before , $V=(Y \times U)^{*}$.
Theorem (F. Sottile, Y. Huang, I.Z.)
If $X_{\Sigma} \cap \operatorname{Gr}_{m}(V)=\emptyset$, codim $X_{\Sigma}>m p+1$, and the degree of the pole placement map is 2 , then the control system is state-feedback equivalent to a symmetric control system.

Theorem (F. Sottile, Y. Huang, I.Z.)
(1) If $m=p=2$ and $\mathbb{P} X_{\Sigma} \cap \operatorname{Gr}_{2}(V)=\emptyset$, then the degree of the pole placement map is greater than 1 if and only the control system is state-feedback equivalent to a symmetric control system;
of the pole placement map is
of the pole placement map is greater than 1 if and only if the
control system is state-feedback equivalent to a symmetric control

Applications to pole placement map

Consider the linear control system Σ as before , $V=(Y \times U)^{*}$.
Theorem (F. Sottile, Y. Huang, I.Z.)
If $X_{\Sigma} \cap \operatorname{Gr}_{m}(V)=\emptyset$, codim $X_{\Sigma}>m p+1$, and the degree of the pole placement map is 2 , then the control system is state-feedback equivalent to a symmetric control system.

Theorem (F. Sottile, Y. Huang, I.Z.)
(1) If $m=p=2$ and $\mathbb{P} X_{\Sigma} \cap \operatorname{Gr}_{2}(V)=\emptyset$, then the degree of the pole placement map is greater than 1 if and only the control system is state-feedback equivalent to a symmetric control system;
(2) If $m=p=3, \mathbb{P} X_{\Sigma} \cap \operatorname{Gr}_{3}(V)=\emptyset$, and $\operatorname{dim} X \leq 5$, then the degree of the pole placement map is 1 ;
> of the pole placement map is greater than 1 if and only if the
> control system is state-feedback equivalent to a symmetric control

Applications to pole placement map

Consider the linear control system Σ as before , $V=(Y \times U)^{*}$.
Theorem (F. Sottile, Y. Huang, I.Z.)
If $X_{\Sigma} \cap \operatorname{Gr}_{m}(V)=\emptyset$, codim $X_{\Sigma}>m p+1$, and the degree of the pole placement map is 2 , then the control system is state-feedback equivalent to a symmetric control system.

Theorem (F. Sottile, Y. Huang, I.Z.)
(1) If $m=p=2$ and $\mathbb{P} X_{\Sigma} \cap \operatorname{Gr}_{2}(V)=\emptyset$, then the degree of the pole placement map is greater than 1 if and only the control system is state-feedback equivalent to a symmetric control system;
(2) If $m=p=3, \mathbb{P} X_{\Sigma} \cap \operatorname{Gr}_{3}(V)=\emptyset$, and $\operatorname{dim} X \leq 5$, then the degree of the pole placement map is 1 ;
(3) If $m=p=3, \mathbb{P} X_{\Sigma} \cap \operatorname{Gr}_{3}(V)=\emptyset$, and $\operatorname{dim} X=6$, then the degree of the pole placement map is greater than 1 if and only if the control system is state-feedback equivalent to a symmetric control system.

Another application: Wronski map

$$
\Lambda=\operatorname{span}\left\{f_{1}(t), f_{2}(t), \ldots, f_{p}(t)\right\}, \quad \operatorname{dim} \Lambda=p
$$

Change of basis \longrightarrow multiplication of Wronskian by a constant

Another application: Wronski map

$$
\Lambda=\operatorname{span}\left\{f_{1}(t), f_{2}(t), \ldots, f_{p}(t)\right\}, \quad \operatorname{dim} \Lambda=p
$$

$$
\operatorname{Wr}\left(f_{1}(t), f_{2}(t), \ldots, f_{p}(t)\right):=\operatorname{det}\left(\begin{array}{cccc}
f_{1}(t) & f_{2}(t) & \ldots & f_{p}(t) \\
f_{1}^{\prime}(t) & f_{2}^{\prime}(t) & \ldots & f_{p}^{\prime}(t) \\
\vdots & \vdots & \ddots & \vdots \\
f_{1}^{(p-1)}(t) & f_{2}^{(p-1)}(t) & \ldots & f_{p}^{(p-1)}(t)
\end{array}\right)
$$

Change of basis \longrightarrow multiplication of Wronskian by a constant

Another application: Wronski map

$$
\Lambda=\operatorname{span}\left\{f_{1}(t), f_{2}(t), \ldots, f_{p}(t)\right\}, \quad \operatorname{dim} \Lambda=p
$$

$$
\operatorname{Wr}\left(f_{1}(t), f_{2}(t), \ldots, f_{p}(t)\right):=\operatorname{det}\left(\begin{array}{cccc}
f_{1}(t) & f_{2}(t) & \ldots & f_{p}(t) \\
f_{1}^{\prime}(t) & f_{2}^{\prime}(t) & \ldots & f_{p}^{\prime}(t) \\
\vdots & \vdots & \ddots & \vdots \\
f_{1}^{(p-1)}(t) & f_{2}^{(p-1)}(t) & \ldots & f_{p}^{(p-1)}(t)
\end{array}\right)
$$

Change of basis \longrightarrow multiplication of Wronskian by a constant

Wronski map (continued)

Consider Linear differential operator

$$
L x=x^{(m+p)}(t)+a_{m+p-1}(t) x^{(m+p-1)}(t)+\ldots+a_{0}(t) x(t)
$$

Let V_{L} be the space of solution of $L x=0$.

$$
\mathrm{Wr}: \operatorname{Gr}_{m}\left(V_{L}\right) \longrightarrow \mathbb{P}\left(\mathcal{C}^{\infty}\right) .
$$

(1) Wronki map is also equivalent to certain central projection $\pi_{X_{L}}$ of
(2) X_{L} is induced by a Lagrangian involution if and only if L is equivalent to a self-adjoint L under a transformation $L(x) \mapsto \frac{1}{\mu(\cdot)} L(\mu(\cdot) x(\cdot))$ for some nonzero function μ. In this case $\operatorname{Wr}(\Lambda)=\operatorname{Wr}\left(\Lambda^{\omega}\right)$ w.r.t. to the corresponding symplectic form on V_{L}
(3) Condition $X_{L} \cap \operatorname{Gr}_{p}\left(V_{L}\right)=\emptyset$ holds automatically if L has analytic coefficients and our results on central projections can be reformulated accordingly.

Wronski map (continued)

Consider Linear differential operator

$$
L x=x^{(m+p)}(t)+a_{m+p-1}(t) x^{(m+p-1)}(t)+\ldots+a_{0}(t) x(t)
$$

Let V_{L} be the space of solution of $L x=0$.

$$
\text { Wr: } \operatorname{Gr}_{m}\left(V_{L}\right) \longrightarrow \mathbb{P}\left(\mathcal{C}^{\infty}\right)
$$

(1) Wronki map is also equivalent to certain central projection $\pi_{X_{L}}$ of $\operatorname{Gr}_{p}\left(V_{L}\right)$ for some $X_{L} \subset \wedge^{p} V_{L}$.
(2) X_{L} is induced by a Lagrangian involution if and only if L is equivalent to a self-adjoint L under a transformation $L(x) \mapsto \frac{1}{\mu(\cdot)} L(\mu(\cdot) x(\cdot))$ for some nonzero function μ. In this case $\operatorname{Wr}(\Lambda)=\operatorname{Wr}\left(\Lambda^{\omega}\right)$ w.r.t. to the corresponding symplectic form on V_{L}
(3) Condition $X_{L} \cap \operatorname{Gr}_{p}\left(V_{L}\right)=\emptyset$ holds automatically if L has analytic coefficients and our results on central projections can be reformulated accordingly.

Wronski map (continued)

Consider Linear differential operator

$$
L x=x^{(m+p)}(t)+a_{m+p-1}(t) x^{(m+p-1)}(t)+\ldots+a_{0}(t) x(t)
$$

Let V_{L} be the space of solution of $L x=0$.

$$
\mathrm{Wr}: \operatorname{Gr}_{m}\left(V_{L}\right) \longrightarrow \mathbb{P}\left(\mathcal{C}^{\infty}\right)
$$

(1) Wronki map is also equivalent to certain central projection $\pi_{X_{L}}$ of $\operatorname{Gr}_{p}\left(V_{L}\right)$ for some $X_{L} \subset \wedge^{p} V_{L}$.
(2) X_{L} is induced by a Lagrangian involution if and only if L is equivalent to a self-adjoint L under a transformation $L(x) \mapsto \frac{1}{\mu(\cdot)} L(\mu(\cdot) x(\cdot))$ for some nonzero function μ.

Wronski map (continued)

Consider Linear differential operator

$$
L x=x^{(m+p)}(t)+a_{m+p-1}(t) x^{(m+p-1)}(t)+\ldots+a_{0}(t) x(t)
$$

Let V_{L} be the space of solution of $L x=0$.

$$
\mathrm{Wr}: \operatorname{Gr}_{m}\left(V_{L}\right) \longrightarrow \mathbb{P}\left(\mathcal{C}^{\infty}\right)
$$

(1) Wronki map is also equivalent to certain central projection $\pi_{X_{L}}$ of $\operatorname{Gr}_{p}\left(V_{L}\right)$ for some $X_{L} \subset \wedge^{p} V_{L}$.
(2) X_{L} is induced by a Lagrangian involution if and only if L is equivalent to a self-adjoint L under a transformation $L(x) \mapsto \frac{1}{\mu(\cdot)} L(\mu(\cdot) x(\cdot))$ for some nonzero function μ. In this case $\operatorname{Wr}(\Lambda)=\operatorname{Wr}\left(\Lambda^{\omega}\right)$ w.r.t. to the corresponding symplectic form on V_{L}.
(3) Condition $X_{L} \cap \operatorname{Gr}_{p}\left(V_{L}\right)=\emptyset$ holds automatically if L has analytic
coefficients and our results on central projections can be
reformulated accordingly.

Wronski map (continued)

Consider Linear differential operator

$$
L x=x^{(m+p)}(t)+a_{m+p-1}(t) x^{(m+p-1)}(t)+\ldots+a_{0}(t) x(t)
$$

Let V_{L} be the space of solution of $L x=0$.

$$
\mathrm{Wr}: \operatorname{Gr}_{m}\left(V_{L}\right) \longrightarrow \mathbb{P}\left(\mathcal{C}^{\infty}\right)
$$

(1) Wronki map is also equivalent to certain central projection $\pi_{X_{L}}$ of $\operatorname{Gr}_{p}\left(V_{L}\right)$ for some $X_{L} \subset \wedge^{p} V_{L}$.
(2) X_{L} is induced by a Lagrangian involution if and only if L is equivalent to a self-adjoint L under a transformation $L(x) \mapsto \frac{1}{\mu(\cdot)} L(\mu(\cdot) x(\cdot))$ for some nonzero function μ. In this case $\operatorname{Wr}(\Lambda)=\operatorname{Wr}\left(\Lambda^{\omega}\right)$ w.r.t. to the corresponding symplectic form on V_{L}.
(3) Condition $X_{L} \cap \operatorname{Gr}_{p}\left(V_{L}\right)=\emptyset$ holds automatically if L has analytic coefficients and our results on central projections can be reformulated accordingly.

What is special in self-adjoint linear differential operators?

Assume that the operator L has analytic coefficients.
Theorem (F. Sottile, Y. Huang, I.Z.)
If codim $X_{L}>m p+1$ and the degree of the Wronski map is 2 , then L is equivalent to a self-adjoint operator.

(1) If $m=p=2$, then the degree of the Wronski map is greater than 1 if and only L is equivalent to a self-adjoint operator.
(2) If $m=p=3$ and $\operatorname{dim} X_{L} \leq 5$, then the degree of the Wronski map is 1 ;
(3) If $m=p=3$ and $\operatorname{dim} X_{L}=6$, then the degree of the Wronski
map is greater than 1 if and only if the L is equivalent to a self-adjoint operator.

What is special in self-adjoint linear differential operators?

Assume that the operator L has analytic coefficients.
Theorem (F. Sottile, Y. Huang, I.Z.)
If codim $X_{L}>m p+1$ and the degree of the Wronski map is 2 , then L is equivalent to a self-adjoint operator.

Theorem (F. Sottile, Y. Huang, I.Z.)
(1) If $m=p=2$, then the degree of the Wronski map is greater than 1 if and only L is equivalent to a self-adjoint operator. ;If $m=p=3$ and $\operatorname{dim} X_{L}=6$, then the degree of the Wronski map is greater than 1 if and only if the L is equivalent to a self-adjoint operator.

What is special in self-adjoint linear differential operators?

Assume that the operator L has analytic coefficients.
Theorem (F. Sottile, Y. Huang, I.Z.)
If codim $X_{L}>m p+1$ and the degree of the Wronski map is 2 , then L is equivalent to a self-adjoint operator.

Theorem (F. Sottile, Y. Huang, I.Z.)
(1) If $m=p=2$, then the degree of the Wronski map is greater than 1 if and only L is equivalent to a self-adjoint operator. ;
(2) If $m=p=3$ and $\operatorname{dim} X_{L} \leq 5$, then the degree of the Wronski map is 1 ;
(3) If $m=p=3$ and $\operatorname{dim} X_{L}=6$, then the degree of the Wronski map is greater than 1 if and only if the L is equivalent to a self-adjoint operator.

What is special in self-adjoint linear differential operators?

Assume that the operator L has analytic coefficients.
Theorem (F. Sottile, Y. Huang, I.Z.)
If codim $X_{L}>m p+1$ and the degree of the Wronski map is 2 , then L is equivalent to a self-adjoint operator.

Theorem (F. Sottile, Y. Huang, I.Z.)
(1) If $m=p=2$, then the degree of the Wronski map is greater than 1 if and only L is equivalent to a self-adjoint operator. ;
(2) If $m=p=3$ and $\operatorname{dim} X_{L} \leq 5$, then the degree of the Wronski map is 1 ;
(3) If $m=p=3$ and $\operatorname{dim} X_{L}=6$, then the degree of the Wronski map is greater than 1 if and only if the L is equivalent to a self-adjoint operator.

Thanks for your attention.

[^0]: We say that such X is induced by a finite order linear automorphism.

