Injectivity properties of pole placement maps of linear control systems

Igor Zelenko

Based on joint work with Frank Sottile and Yanhe Huang

Texas A&M University, USA

AIMS 2016, Orlando, July 2

 $\Sigma = (A, B, C)$, where A, B, C are complex matrices of sizes $N \times N$, $N \times m$ and $p \times N$ such that the linear control system

$$\dot{x} = Ax + Bu,$$

 $y = Cx$
 $x \in X = \mathbb{C}^N, y \in Y = \mathbb{C}^p, u \in U = \mathbb{C}^m$

is controllable and observable.

Transfer function $G(s) = C(sI - A)^{-1}B$.

Feedback u = Ky, where K is a $m \times p$ matrix K, \rightarrow closed loop system $\dot{x} = (A + BKC)x$.

Pole placement map $F_{\Sigma} : \operatorname{Mat}_{m \times p} \to \mathbb{C}_N[s]$,

 $\Sigma = (A, B, C)$, where A, B, C are complex matrices of sizes $N \times N$, $N \times m$ and $p \times N$ such that the linear control system

$$\dot{x} = Ax + Bu,$$

 $y = Cx$
 $x \in X = \mathbb{C}^N, y \in Y = \mathbb{C}^p, u \in U = \mathbb{C}^m$

is controllable and observable.

Transfer function $G(s) = C(sI - A)^{-1}B$.

Feedback u = Ky, where K is a $m \times p$ matrix K, \rightarrow closed loop system $\dot{x} = (A + BKC)x$.

Pole placement map $F_{\Sigma} : \operatorname{Mat}_{m \times p} \to \mathbb{C}_N[s]$,

 $\Sigma = (A, B, C)$, where A, B, C are complex matrices of sizes $N \times N$, $N \times m$ and $p \times N$ such that the linear control system

$$\dot{x} = Ax + Bu,$$

 $y = Cx$
 $x \in X = \mathbb{C}^N, y \in Y = \mathbb{C}^p, u \in U = \mathbb{C}^m$

is controllable and observable.

Transfer function $G(s) = C(sI - A)^{-1}B$.

Feedback u = Ky, where K is a $m \times p$ matrix K, \rightarrow closed loop system $\dot{x} = (A + BKC)x$.

Pole placement map $F_{\Sigma} : \operatorname{Mat}_{m \times p} \to \mathbb{C}_N[s],$

 $\Sigma = (A, B, C)$, where A, B, C are complex matrices of sizes $N \times N$, $N \times m$ and $p \times N$ such that the linear control system

$$\dot{x} = Ax + Bu,$$

 $y = Cx$
 $x \in X = \mathbb{C}^N, y \in Y = \mathbb{C}^p, u \in U = \mathbb{C}^m$

is controllable and observable.

Transfer function $G(s) = C(sI - A)^{-1}B$.

Feedback u = Ky, where K is a $m \times p$ matrix K, \rightarrow closed loop system $\dot{x} = (A + BKC)x$.

Pole placement map $F_{\Sigma} : \operatorname{Mat}_{m \times p} \to \mathbb{C}_N[s],$

 $\Sigma = (A, B, C)$, where A, B, C are complex matrices of sizes $N \times N$, $N \times m$ and $p \times N$ such that the linear control system

$$\dot{x} = Ax + Bu,$$

 $y = Cx$
 $x \in X = \mathbb{C}^N, y \in Y = \mathbb{C}^p, u \in U = \mathbb{C}^m$

is controllable and observable.

Transfer function $G(s) = C(sI - A)^{-1}B$.

Feedback u = Ky, where K is a $m \times p$ matrix K, \rightarrow closed loop system $\dot{x} = (A + BKC)x$.

Pole placement map F_{Σ} : $\operatorname{Mat}_{m \times p} \to \mathbb{C}_N[s]$,

$$F(K)(s) = \det(sI - A - BKC).$$

We assume that N > mp, so F is not onto (i.e. an arbitrary configuration of poles is not realizable).

Question Under what condition on the control system does the general polynomial in the image of F has at least two preimage (or, equivalently, general realizable configuration of poles is realized at least by two feedbacks).

Obvious examples:

- (Symmetric systems or state-feedback equivalent to them) $A = A^T, C = B^T \Leftrightarrow G(s)$ is symmetric. Then $F(K) = F(K^T)$;
- (Skew-symmetric systems or state-feedback equivalent to them) N is even and for some J such that $J^T = -J$ and $J^2 = -I$, we have $(AJ)^T = -AJ$, $C = -B^TJ \Leftrightarrow G(s)$ is skew-symmetric. Then $F(K) = F(-K^T)$;

We assume that N > mp, so F is not onto (i.e. an arbitrary configuration of poles is not realizable).

Question Under what condition on the control system does the general polynomial in the image of F has at least two preimage (or, equivalently, general realizable configuration of poles is realized at least by two feedbacks).

Obvious examples:

- (Symmetric systems or state-feedback equivalent to them) $A = A^T, C = B^T \Leftrightarrow G(s)$ is symmetric. Then $F(K) = F(K^T)$;
- (Skew-symmetric systems or state-feedback equivalent to them) N is even and for some J such that $J^T = -J$ and $J^2 = -I$, we have $(AJ)^T = -AJ$, $C = -B^TJ \Leftrightarrow G(s)$ is skew-symmetric. Then $F(K) = F(-K^T)$;

We assume that N > mp, so F is not onto (i.e. an arbitrary configuration of poles is not realizable).

Question Under what condition on the control system does the general polynomial in the image of F has at least two preimage (or, equivalently, general realizable configuration of poles is realized at least by two feedbacks).

Obvious examples:

- (Symmetric systems or state-feedback equivalent to them) $A = A^T$, $C = B^T \Leftrightarrow G(s)$ is symmetric. Then $F(K) = F(K^T)$;
- (Skew-symmetric systems or state-feedback equivalent to them) N is even and for some J such that $J^T = -J$ and $J^2 = -I$, we have $(AJ)^T = -AJ$, $C = -B^TJ \Leftrightarrow G(s)$ is skew-symmetric. Then $F(K) = F(-K^T)$;

We assume that N > mp, so F is not onto (i.e. an arbitrary configuration of poles is not realizable).

Question Under what condition on the control system does the general polynomial in the image of F has at least two preimage (or, equivalently, general realizable configuration of poles is realized at least by two feedbacks).

Obvious examples:

• (Symmetric systems or state-feedback equivalent to them) $A = A^T, C = B^T \Leftrightarrow G(s)$ is symmetric. Then $F(K) = F(K^T)$:

• (Skew-symmetric systems or state-feedback equivalent to them) N is even and for some J such that $J^T = -J$ and $J^2 = -I$, we have $(AJ)^T = -AJ$, $C = -B^TJ \Leftrightarrow G(s)$ is skew-symmetric. Then $F(K) = F(-K^T)$;

We assume that N > mp, so F is not onto (i.e. an arbitrary configuration of poles is not realizable).

Question Under what condition on the control system does the general polynomial in the image of F has at least two preimage (or, equivalently, general realizable configuration of poles is realized at least by two feedbacks).

Obvious examples:

• (Symmetric systems or state-feedback equivalent to them) $A = A^T, C = B^T \Leftrightarrow G(s)$ is symmetric. Then $F(K) = F(K^T)$;

• (Skew-symmetric systems or state-feedback equivalent to them) N is even and for some J such that $J^T = -J$ and $J^2 = -I$, we have $(AJ)^T = -AJ$, $C = -B^TJ \Leftrightarrow G(s)$ is skew-symmetric. Then $F(K) = F(-K^T)$;

We assume that N > mp, so F is not onto (i.e. an arbitrary configuration of poles is not realizable).

Question Under what condition on the control system does the general polynomial in the image of F has at least two preimage (or, equivalently, general realizable configuration of poles is realized at least by two feedbacks).

Obvious examples:

• (Symmetric systems or state-feedback equivalent to them) $A = A^T$, $C = B^T \Leftrightarrow G(s)$ is symmetric. Then $F(K) = F(K^T)$;

• (Skew-symmetric systems or state-feedback equivalent to them) N is even and for some J such that $J^T = -J$ and $J^2 = -I$, we have $(AJ)^T = -AJ$, $C = -B^TJ \Leftrightarrow G(s)$ is skew-symmetric. Then $F(K) = F(-K^T)$;

We assume that N > mp, so F is not onto (i.e. an arbitrary configuration of poles is not realizable).

Question Under what condition on the control system does the general polynomial in the image of F has at least two preimage (or, equivalently, general realizable configuration of poles is realized at least by two feedbacks).

Obvious examples:

- (Symmetric systems or state-feedback equivalent to them) $A = A^T$, $C = B^T \Leftrightarrow G(s)$ is symmetric. Then $F(K) = F(K^T)$;
- (Skew-symmetric systems or state-feedback equivalent to them) N is even and for some J such that $J^T = -J$ and $J^2 = -I$, we have $(AJ)^T = -AJ$, $C = -B^TJ \Leftrightarrow G(s)$ is skew-symmetric. Then $F(K) = F(-K^T)$;

We assume that N > mp, so F is not onto (i.e. an arbitrary configuration of poles is not realizable).

Question Under what condition on the control system does the general polynomial in the image of F has at least two preimage (or, equivalently, general realizable configuration of poles is realized at least by two feedbacks).

Obvious examples:

- (Symmetric systems or state-feedback equivalent to them) $A = A^T$, $C = B^T \Leftrightarrow G(s)$ is symmetric. Then $F(K) = F(K^T)$;
- (Skew-symmetric systems or state-feedback equivalent to them) N is even and for some J such that $J^T = -J$ and $J^2 = -I$, we have $(AJ)^T = -AJ$, $C = -B^TJ \Leftrightarrow G(s)$ is skew-symmetric. Then $F(K) = F(-K^T)$;

We assume that N > mp, so F is not onto (i.e. an arbitrary configuration of poles is not realizable).

Question Under what condition on the control system does the general polynomial in the image of F has at least two preimage (or, equivalently, general realizable configuration of poles is realized at least by two feedbacks).

Obvious examples:

- (Symmetric systems or state-feedback equivalent to them) $A = A^T$, $C = B^T \Leftrightarrow G(s)$ is symmetric. Then $F(K) = F(K^T)$;
- (Skew-symmetric systems or state-feedback equivalent to them) N is even and for some J such that $J^T = -J$ and $J^2 = -I$, we have $(AJ)^T = -AJ$, $C = -B^TJ \Leftrightarrow G(s)$ is skew-symmetric. Then $F(K) = F(-K^T)$;

The map $K \in \text{Hom}(Y, U) \mapsto \text{Graph } K$ is the bijection onto the affine coordinate domain $(0 \times U)^{\text{th}}$ of $\text{Gr}_p(Y \times U)$ consisting of all *p*-dimensional subspaces transversal to $0 \times U$. Hence, the map *F* is well defined on the affine coordinate domain of $\text{Gr}_p(Y \times U)$: F(Graph K) := F(K). It can be extended to the whole

Grassmannian: Use the coprime factorization of the transfer function G(s), $G(s) = C(sI - A)^{-1}B = E(s)D(s)^{-1}$, $\det D(s) = \det(sI - A)$. Then $F(\operatorname{Graph} K)(s) = F(K)(s) = \det \begin{pmatrix} D(s) & K \\ E(s) & I_p \end{pmatrix}$ and the extension to $\operatorname{Gr}_p(Y \times U)$ is given by

$$F(L) = \begin{bmatrix} \det \begin{pmatrix} D(s) & K_1 \\ E(s) & K_2 \end{bmatrix},$$
(1)

The map $K \in \text{Hom}(Y, U) \mapsto \text{Graph } K$ is the bijection onto the affine coordinate domain $(0 \times U)^{\uparrow}$ of $\text{Gr}_p(Y \times U)$ consisting of all *p*-dimensional subspaces transversal to $0 \times U$. Hence, the map *F* is well defined on the affine coordinate domain of $\text{Gr}_p(Y \times U)$: F(Graph K) := F(K). It can be extended to the whole

Grassmannian: Use the coprime factorization of the transfer function G(s), $G(s) = C(sI - A)^{-1}B = E(s)D(s)^{-1}$, $\det D(s) = \det(sI - A)$. Then $F(\operatorname{Graph} K)(s) = F(K)(s) = \det \begin{pmatrix} D(s) & K \\ E(s) & I_p \end{pmatrix}$ and the extension to $\operatorname{Gr}_p(Y \times U)$ is given by

$$F(L) = \begin{bmatrix} \det \begin{pmatrix} D(s) & K_1 \\ E(s) & K_2 \end{bmatrix},$$
(1)

The map $K \in \text{Hom}(Y, U) \mapsto \text{Graph } K$ is the bijection onto the affine coordinate domain $(0 \times U)^{\uparrow}$ of $\text{Gr}_p(Y \times U)$ consisting of all *p*-dimensional subspaces transversal to $0 \times U$. Hence, the map *F* is well defined on the affine coordinate domain of $\text{Gr}_p(Y \times U)$: F(Graph K) := F(K). It can be extended to the whole

Grassmannian: Use the coprime factorization of the transfer function $G(s), G(s) = C(sI - A)^{-1}B = E(s)D(s)^{-1}, \quad \det D(s) = \det(sI - A).$ Then $F(\operatorname{Graph} K)(s) = F(K)(s) = \det \begin{pmatrix} D(s) & K \\ E(s) & I_p \end{pmatrix}$ and the extension to $\operatorname{Gr}_p(Y \times U)$ is given by

$$F(L) = \begin{bmatrix} \det \begin{pmatrix} D(s) & K_1 \\ E(s) & K_2 \end{bmatrix},$$
(1)

The map $K \in \text{Hom}(Y, U) \mapsto \text{Graph } K$ is the bijection onto the affine coordinate domain $(0 \times U)^{\uparrow}$ of $\text{Gr}_p(Y \times U)$ consisting of all *p*-dimensional subspaces transversal to $0 \times U$. Hence, the map *F* is well defined on the affine coordinate domain of $\text{Gr}_p(Y \times U)$: F(Graph K) := F(K). It can be extended to the whole

Grassmannian: Use the coprime factorization of the transfer function G(s), $G(s) = C(sI - A)^{-1}B = E(s)D(s)^{-1}$, det D(s) = det(sI - A). Then $F(Graph K)(s) = F(K)(s) = det \begin{pmatrix} D(s) & K \\ E(s) & I_p \end{pmatrix}$ and the extension to $Gr_p(Y \times U)$ is given by

$$F(L) = \begin{bmatrix} \det \begin{pmatrix} D(s) & K_1 \\ E(s) & K_2 \end{bmatrix},$$
(1)

The map $K \in \text{Hom}(Y, U) \mapsto \text{Graph } K$ is the bijection onto the affine coordinate domain $(0 \times U)^{\uparrow}$ of $\text{Gr}_p(Y \times U)$ consisting of all *p*-dimensional subspaces transversal to $0 \times U$. Hence, the map *F* is well defined on the affine coordinate domain of $\text{Gr}_p(Y \times U)$: F(Graph K) := F(K). It can be extended to the whole

Grassmannian: Use the coprime factorization of the transfer function G(s), $G(s) = C(sI - A)^{-1}B = E(s)D(s)^{-1}$, $\det D(s) = \det(sI - A)$. Then $F(\operatorname{Graph} K)(s) = F(K)(s) = \det \begin{pmatrix} D(s) & K \\ E(s) & I_p \end{pmatrix}$ and the extension to $\operatorname{Gr}_p(Y \times U)$ is given by

$$F(L) = \begin{bmatrix} \det \begin{pmatrix} D(s) & K_1 \\ E(s) & K_2 \end{bmatrix},$$
(1)

The map $K \in \text{Hom}(Y,U) \mapsto \text{Graph } K$ is the bijection onto the affine coordinate domain $(0 \times U)^{\uparrow}$ of $\text{Gr}_p(Y \times U)$ consisting of all *p*-dimensional subspaces transversal to $0 \times U$. Hence, the map *F* is well defined on the affine coordinate domain of $\text{Gr}_p(Y \times U)$: F(Graph K) := F(K). It can be extended to the whole

Grassmannian: Use the coprime factorization of the transfer function G(s), $G(s) = C(sI - A)^{-1}B = E(s)D(s)^{-1}$, $\det D(s) = \det(sI - A)$. Then $F(\operatorname{Graph} K)(s) = F(K)(s) = \det \begin{pmatrix} D(s) & K \\ E(s) & I_p \end{pmatrix}$ and the extension to $\operatorname{Gr}_n(Y \times U)$ is given by

$$F(L) = \begin{bmatrix} \det \begin{pmatrix} D(s) & K_1 \\ E(s) & K_2 \end{bmatrix},$$
(1)

The map $K \in \text{Hom}(Y, U) \mapsto \text{Graph } K$ is the bijection onto the affine coordinate domain $(0 \times U)^{\uparrow}$ of $\text{Gr}_p(Y \times U)$ consisting of all *p*-dimensional subspaces transversal to $0 \times U$. Hence, the map *F* is well defined on the affine coordinate domain of $\text{Gr}_p(Y \times U)$: F(Graph K) := F(K). It can be extended to the whole

Grassmannian: Use the coprime factorization of the transfer function $G(s), G(s) = C(sI - A)^{-1}B = E(s)D(s)^{-1}, \quad \det D(s) = \det(sI - A).$ Then $F(\operatorname{Graph} K)(s) = F(K)(s) = \det \begin{pmatrix} D(s) & K \\ E(s) & I_p \end{pmatrix}$ and the extension to $\operatorname{Gr}_p(Y \times U)$ is given by

$$F(L) = \begin{bmatrix} \det \begin{pmatrix} D(s) & K_1 \\ E(s) & K_2 \end{bmatrix},$$
(1)

Let V be a complex vector space $(\dim V = m + p)$ and $\wedge^p V$ be the pth alternating tensor power of V.

Plücker embedding $\operatorname{Pl}: \operatorname{Gr}_p(V) \to \mathbb{P}(\wedge^p V):$

$$\operatorname{span}(v_1,\ldots,v_p) \to v_1 \wedge v_2 \ldots \wedge v_p.$$

The image of P1 will be called the Grassmann variety and it will be also denoted by $\operatorname{Gr}_p(V)$.

Given a subspace $X \subset \wedge^p V$, let $\hat{\pi}_X : \wedge^p V \to (\wedge^p V)/X$ be the canonical projection.

This induces a map $\pi_X : \mathbb{P} \wedge^p V \to \mathbb{P}(\wedge^p V/X) \cup \{0\}$ (here

Let V be a complex vector space $(\dim V = m + p)$ and $\wedge^p V$ be the pth alternating tensor power of V.

Plücker embedding $\operatorname{Pl}: \operatorname{Gr}_p(V) \to \mathbb{P}(\wedge^p V):$

 $\operatorname{span}(v_1,\ldots,v_p) \to v_1 \wedge v_2 \ldots \wedge v_p.$

The image of P1 will be called the Grassmann variety and it will be also denoted by $\operatorname{Gr}_p(V)$.

Given a subspace $X \subset \wedge^p V$, let $\hat{\pi}_X : \wedge^p V \to (\wedge^p V)/X$ be the canonical projection.

This induces a map $\pi_X : \mathbb{P} \wedge^p V \to \mathbb{P}(\wedge^p V/X) \cup \{0\}$ (here

 $\pi_X^{-1}(\{0\}) = \mathbb{P}X).$

Let V be a complex vector space $(\dim V = m + p)$ and $\wedge^p V$ be the pth alternating tensor power of V.

Plücker embedding $\operatorname{Pl}: \operatorname{Gr}_p(V) \to \mathbb{P}(\wedge^p V):$

$$\operatorname{span}(v_1,\ldots,v_p) \to v_1 \wedge v_2 \ldots \wedge v_p.$$

The image of P1 will be called the Grassmann variety and it will be also denoted by $\operatorname{Gr}_p(V)$.

Given a subspace $X \subset \wedge^p V$, let $\hat{\pi}_X : \wedge^p V \to (\wedge^p V)/X$ be the canonical projection.

This induces a map $\pi_X : \mathbb{P} \wedge^p V \to \mathbb{P}(\wedge^p V/X) \cup \{0\}$ (here

 $\pi_X^{-1}(\{0\}) = \mathbb{P}X).$

Let V be a complex vector space $(\dim V = m + p)$ and $\wedge^p V$ be the pth alternating tensor power of V.

Plücker embedding $\operatorname{Pl}: \operatorname{Gr}_p(V) \to \mathbb{P}(\wedge^p V):$

$$\operatorname{span}(v_1,\ldots,v_p) \to v_1 \wedge v_2 \ldots \wedge v_p.$$

The image of Pl will be called the Grassmann variety and it will be also denoted by $Gr_p(V)$.

Given a subspace $X \subset \wedge^p V$, let $\hat{\pi}_X : \wedge^p V \to (\wedge^p V)/X$ be the canonical projection.

This induces a map $\pi_X : \mathbb{P} \wedge^p V \to \mathbb{P}(\wedge^p V/X) \cup \{0\}$ (here

 $\pi_X^{-1}(\{0\}) = \mathbb{P}X).$

Let V be a complex vector space $(\dim V = m + p)$ and $\wedge^p V$ be the pth alternating tensor power of V.

Plücker embedding $\operatorname{Pl}: \operatorname{Gr}_p(V) \to \mathbb{P}(\wedge^p V):$

$$\operatorname{span}(v_1,\ldots,v_p) \to v_1 \wedge v_2 \ldots \wedge v_p.$$

The image of Pl will be called the Grassmann variety and it will be also denoted by $\operatorname{Gr}_p(V)$.

Given a subspace $X \subset \wedge^p V$, let $\hat{\pi}_X : \wedge^p V \to (\wedge^p V)/X$ be the canonical projection.

This induces a map $\pi_X : \mathbb{P} \wedge^p V \to \mathbb{P}(\wedge^p V/X) \cup \{0\}$ (here $\pi_X^{-1}(\{0\}) = \mathbb{P}X$). Restrict π_X to $\operatorname{Gr}_p(V)$ -the central (or linear) projection of $\operatorname{Gr}_p(X)$

We are interested in the question when the degree of this restriction is finite and greater than 1?

Let V be a complex vector space $(\dim V = m + p)$ and $\wedge^p V$ be the pth alternating tensor power of V.

Plücker embedding $\operatorname{Pl}: \operatorname{Gr}_p(V) \to \mathbb{P}(\wedge^p V):$

$$\operatorname{span}(v_1,\ldots,v_p) \to v_1 \wedge v_2 \ldots \wedge v_p.$$

The image of Pl will be called the Grassmann variety and it will be also denoted by $\operatorname{Gr}_p(V)$.

Given a subspace $X \subset \wedge^p V$, let $\hat{\pi}_X : \wedge^p V \to (\wedge^p V)/X$ be the canonical projection.

This induces a map $\pi_X : \mathbb{P} \wedge^p V \to \mathbb{P}(\wedge^p V/X) \cup \{0\}$ (here

 $\pi_X^{-1}(\{0\}) = \mathbb{P}X).$

Let V be a complex vector space $(\dim V = m + p)$ and $\wedge^p V$ be the pth alternating tensor power of V.

Plücker embedding $\operatorname{Pl}: \operatorname{Gr}_p(V) \to \mathbb{P}(\wedge^p V):$

$$\operatorname{span}(v_1,\ldots,v_p) \to v_1 \wedge v_2 \ldots \wedge v_p.$$

The image of Pl will be called the Grassmann variety and it will be also denoted by $\operatorname{Gr}_p(V)$.

Given a subspace $X \subset \wedge^p V$, let $\hat{\pi}_X : \wedge^p V \to (\wedge^p V)/X$ be the canonical projection.

This induces a map $\pi_X : \mathbb{P} \wedge^p V \to \mathbb{P}(\wedge^p V/X) \cup \{0\}$ (here $\pi_X^{-1}(\{0\}) = \mathbb{P}X$).

Let V be a complex vector space $(\dim V = m + p)$ and $\wedge^p V$ be the pth alternating tensor power of V.

Plücker embedding $\operatorname{Pl}: \operatorname{Gr}_p(V) \to \mathbb{P}(\wedge^p V):$

$$\operatorname{span}(v_1,\ldots,v_p) \to v_1 \wedge v_2 \ldots \wedge v_p.$$

The image of Pl will be called the Grassmann variety and it will be also denoted by $\operatorname{Gr}_p(V)$.

Given a subspace $X \subset \wedge^p V$, let $\hat{\pi}_X : \wedge^p V \to (\wedge^p V)/X$ be the canonical projection.

This induces a map $\pi_X : \mathbb{P} \wedge^p V \to \mathbb{P}(\wedge^p V/X) \cup \{0\}$ (here $\pi_X^{-1}(\{0\}) = \mathbb{P}X$).

Let V be a complex vector space $(\dim V = m + p)$ and $\wedge^p V$ be the pth alternating tensor power of V.

Plücker embedding $\operatorname{Pl}: \operatorname{Gr}_p(V) \to \mathbb{P}(\wedge^p V):$

$$\operatorname{span}(v_1,\ldots,v_p) \to v_1 \wedge v_2 \ldots \wedge v_p.$$

The image of Pl will be called the Grassmann variety and it will be also denoted by $\operatorname{Gr}_p(V)$.

Given a subspace $X \subset \wedge^p V$, let $\hat{\pi}_X : \wedge^p V \to (\wedge^p V)/X$ be the canonical projection.

This induces a map $\pi_X : \mathbb{P} \wedge^p V \to \mathbb{P}(\wedge^p V/X) \cup \{0\}$ (here $\pi_X^{-1}(\{0\}) = \mathbb{P}X$).

$$F(L) = \begin{bmatrix} \det \begin{pmatrix} D(s) & K_1 \\ E(s) & K_2 \end{bmatrix} \end{bmatrix},$$

where $L \in \operatorname{Gr}_p(Y \times U)$ is spanned by the last *p* columns of the matrix.

Taking the span of the first *m* columns of the same matrix at each $s \in \mathbb{C}$, we get a curve $s \mapsto \Gamma(s)$, the Hermann-Martin curve of our control system, in $\operatorname{Gr}_m(Y \times U)$. The transfer function G(s) is the coordinate representation of the Hermann-Martin curve in an affine chart of $\operatorname{Gr}_m(Y \times U)$.

$S_{\Gamma} := \operatorname{span}_{s \in \mathbb{C}} \{ \operatorname{Pl}(\Gamma(s)) \} \subset \wedge^{m} (Y \times U) \},$

 $X_{\Gamma} := (S_{\Gamma})^{\perp} = \{ \omega \in \wedge^m (Y \times U)^* : \omega|_{S_{\Gamma}} = 0 \}$

$$F(L) = \left[\det \begin{pmatrix} D(s) & K_1 \\ E(s) & K_2 \end{pmatrix} \right],$$

where $L \in \operatorname{Gr}_p(Y \times U)$ is spanned by the last p columns of the matrix.

Taking the span of the first *m* columns of the same matrix at each $s \in \mathbb{C}$, we get a curve $s \mapsto \Gamma(s)$, the Hermann-Martin curve of our control system, in $\operatorname{Gr}_m(Y \times U)$. The transfer function G(s) is the coordinate representation of the Hermann-Martin curve in an affine chart of $\operatorname{Gr}_m(Y \times U)$.

 $S_{\Gamma} := \operatorname{span}_{s \in \mathbb{C}} \{ \operatorname{Pl}(\Gamma(s)) \} \subset \wedge^m (Y \times U) \},$

 $X_{\Gamma} := (S_{\Gamma})^{\perp} = \{ \omega \in \wedge^m (Y \times U)^* : \omega|_{S_{\Gamma}} = 0 \}$

$$F(L) = \left[\det \begin{pmatrix} D(s) & K_1 \\ E(s) & K_2 \end{pmatrix} \right],$$

where $L \in \operatorname{Gr}_p(Y \times U)$ is spanned by the last p columns of the matrix.

Taking the span of the first *m* columns of the same matrix at each $s \in \mathbb{C}$, we get a curve $s \mapsto \Gamma(s)$, the Hermann-Martin curve of our control system, in $\operatorname{Gr}_m(Y \times U)$. The transfer function G(s) is the coordinate representation of the Hermann-Martin curve in an affine chart of $\operatorname{Gr}_m(Y \times U)$.

 $S_{\Gamma} := \operatorname{span}_{s \in \mathbb{C}} \{ \operatorname{Pl}(\Gamma(s)) \} \subset \wedge^m (Y \times U) \},$

 $X_{\Gamma} := (S_{\Gamma})^{\perp} = \{ \omega \in \wedge^m (Y \times U)^* : \omega|_{S_{\Gamma}} = 0 \}$

$$F(L) = \left[\det \left(\begin{array}{cc} D(s) & K_1 \\ E(s) & K_2 \end{array} \right) \right],$$

where $L \in \operatorname{Gr}_p(Y \times U)$ is spanned by the last p columns of the matrix.

Taking the span of the first *m* columns of the same matrix at each $s \in \mathbb{C}$, we get a curve $s \mapsto \Gamma(s)$, the Hermann-Martin curve of our control system, in $\operatorname{Gr}_m(Y \times U)$. The transfer function G(s) is the coordinate representation of the Hermann-Martin curve in an affine chart of $\operatorname{Gr}_m(Y \times U)$.

 $S_{\Gamma} := \operatorname{span}_{s \in \mathbb{C}} \{ \operatorname{Pl}(\Gamma(s)) \} \subset \wedge^m (Y \times U) \},$

 $X_{\Gamma} := (S_{\Gamma})^{\perp} = \{ \omega \in \wedge^m (Y \times U)^* : \omega|_{S_{\Gamma}} = 0 \}$

$$F(L) = \left[\det \left(\begin{array}{cc} D(s) & K_1 \\ E(s) & K_2 \end{array} \right) \right],$$

where $L \in \operatorname{Gr}_p(Y \times U)$ is spanned by the last p columns of the matrix.

Taking the span of the first *m* columns of the same matrix at each $s \in \mathbb{C}$, we get a curve $s \mapsto \Gamma(s)$, the Hermann-Martin curve of our control system, in $\operatorname{Gr}_m(Y \times U)$. The transfer function G(s) is the coordinate representation of the Hermann-Martin curve in an affine chart of $\operatorname{Gr}_m(Y \times U)$.

 $S_{\Gamma} := \operatorname{span}_{s \in \mathbb{C}} \{ \operatorname{Pl}(\Gamma(s)) \} \subset \wedge^m (Y \times U) \},$

 $X_{\Gamma} := (S_{\Gamma})^{\perp} = \{ \omega \in \wedge^m (Y \times U)^* : \omega|_{S_{\Gamma}} = 0 \}$
Pole placement map via a central projection

$$F(L) = \left[\det \left(\begin{array}{cc} D(s) & K_1 \\ E(s) & K_2 \end{array} \right) \right],$$

where $L \in \operatorname{Gr}_p(Y \times U)$ is spanned by the last p columns of the matrix.

Taking the span of the first *m* columns of the same matrix at each $s \in \mathbb{C}$, we get a curve $s \mapsto \Gamma(s)$, the Hermann-Martin curve of our control system, in $\operatorname{Gr}_m(Y \times U)$. The transfer function G(s) is the coordinate representation of the Hermann-Martin curve in an affine chart of $\operatorname{Gr}_m(Y \times U)$.

 $S_{\Gamma} := \operatorname{span}_{s \in \mathbb{C}} \{ \operatorname{Pl}(\Gamma(s)) \} \subset \wedge^m (Y \times U) \},$

 $X_{\Gamma} := (S_{\Gamma})^{\perp} = \{ \omega \in \wedge^m (Y \times U)^* : \omega|_{S_{\Gamma}} = 0 \}$

The pole placement map *F* is equivalent to the central projection $\pi_{X_{\Gamma}}$ on $\operatorname{Gr}_m((Y \times U)^*)$: There is a bijection *L* between the image of *F* and the image of $\pi_{X_{\Gamma}}$ such that $L \circ F(\Lambda) = \pi_{X_{\Gamma}}(\Lambda^{\perp})$.

Pole placement map via a central projection

$$F(L) = \left[\det \left(\begin{array}{cc} D(s) & K_1 \\ E(s) & K_2 \end{array} \right) \right],$$

where $L \in \operatorname{Gr}_p(Y \times U)$ is spanned by the last p columns of the matrix.

Taking the span of the first *m* columns of the same matrix at each $s \in \mathbb{C}$, we get a curve $s \mapsto \Gamma(s)$, the Hermann-Martin curve of our control system, in $\operatorname{Gr}_m(Y \times U)$. The transfer function G(s) is the coordinate representation of the Hermann-Martin curve in an affine chart of $\operatorname{Gr}_m(Y \times U)$.

 $S_{\Gamma} := \operatorname{span}_{s \in \mathbb{C}} \{ \operatorname{Pl}(\Gamma(s)) \} \subset \wedge^m (Y \times U) \},$

 $X_{\Gamma} := (S_{\Gamma})^{\perp} = \{ \omega \in \wedge^m (Y \times U)^* : \omega |_{S_{\Gamma}} = 0 \}$

The pole placement map *F* is equivalent to the central projection $\pi_{X_{\Gamma}}$ on $\operatorname{Gr}_m((Y \times U)^*)$: There is a bijection *L* between the image of *F* and the image of $\pi_{X_{\Gamma}}$ such that $L \circ F(\Lambda) = \pi_{X_{\Gamma}}(\Lambda^{\perp})$.

If $\operatorname{codim} X = \dim \operatorname{Gr}_p(V) + 1 = mp + 1$ and $\mathbb{P}X \cap \operatorname{Gr}_p(V) = \emptyset$, then the map π_X is finite and the degree of the map π_X is equal to $\frac{1!2!...(p-1)!\cdot(mp)!}{m!(m+1)!...(m+p-1)!}$ (Schubert, 1886)

If $\operatorname{codim} X > mp + 1$, then for generic X the degree of the map π_X is equal to 1.

For which X with $\operatorname{codim} X > mp + 1$ the degree of the map π_X is finite and greater than 1?

If $\operatorname{codim} X = \dim \operatorname{Gr}_p(V) + 1 = mp + 1$ and $\mathbb{P}X \cap \operatorname{Gr}_p(V) = \emptyset$, then the map π_X is finite and the degree of the map π_X is equal to $\frac{1!2!...(p-1)!\cdot(mp)!}{m!(m+1)!...(m+p-1)!}$ (Schubert, 1886)

If $\operatorname{codim} X > mp + 1$, then for generic X the degree of the map π_X is equal to 1.

For which X with $\operatorname{codim} X > mp + 1$ the degree of the map π_X is finite and greater than 1?

If $\operatorname{codim} X = \dim \operatorname{Gr}_p(V) + 1 = mp + 1$ and $\mathbb{P}X \cap \operatorname{Gr}_p(V) = \emptyset$, then the map π_X is finite and the degree of the map π_X is equal to $\frac{1!2!...(p-1)!\cdot(mp)!}{m!(m+1)!...(m+p-1)!}$ (Schubert, 1886)

If $\operatorname{codim} X > mp + 1$, then for generic X the degree of the map π_X is equal to 1.

For which X with $\operatorname{codim} X > mp + 1$ the degree of the map π_X is finite and greater than 1?

If $\operatorname{codim} X = \dim \operatorname{Gr}_p(V) + 1 = mp + 1$ and $\mathbb{P}X \cap \operatorname{Gr}_p(V) = \emptyset$, then the map π_X is finite and the degree of the map π_X is equal to $\frac{1!2!...(p-1)!\cdot(mp)!}{m!(m+1)!...(m+p-1)!}$ (Schubert, 1886)

If $\operatorname{codim} X > mp + 1$, then for generic X the degree of the map π_X is equal to 1.

For which *X* with codim X > mp + 1 the degree of the map π_X is finite and greater than 1?

If $\operatorname{codim} X = \dim \operatorname{Gr}_p(V) + 1 = mp + 1$ and $\mathbb{P}X \cap \operatorname{Gr}_p(V) = \emptyset$, then the map π_X is finite and the degree of the map π_X is equal to $\frac{1!2!...(p-1)!\cdot(mp)!}{m!(m+1)!...(m+p-1)!}$ (Schubert, 1886)

If $\operatorname{codim} X > mp + 1$, then for generic X the degree of the map π_X is equal to 1.

For which X with $\operatorname{codim} X > mp + 1$ the degree of the map π_X is finite and greater than 1?

A preserves the Grassmannian Gr_p(V), i.e. A(Gr_p(V)) ⊂ Gr_p(V);
A preserves the fibers of the map π_X, i.e. π_X(Ay) = π_X(y) for all y ∈ Gr_p(V) ⇒ deg π_X > 1.

A preserves the Grassmannian Gr_p(V), i.e. A(Gr_p(V)) ⊂ Gr_p(V);
A preserves the fibers of the map π_X, i.e. π_X(Ay) = π_X(y) for all y ∈ Gr_p(V) ⇒ deg π_X > 1.

A preserves the Grassmannian Gr_p(V), i.e. A(Gr_p(V)) ⊂ Gr_p(V);
A preserves the fibers of the map π_X, i.e. π_X(Ay) = π_X(y) for all y ∈ Gr_p(V) ⇒ deg π_X > 1.

A preserves the Grassmannian Gr_p(V), i.e. A(Gr_p(V)) ⊂ Gr_p(V);
A preserves the fibers of the map π_X, i.e. π_X(Ay) = π_X(y) for all y ∈ Gr_p(V) ⇒ deg π_X > 1.

A preserves the Grassmannian Gr_p(V), i.e. A(Gr_p(V)) ⊂ Gr_p(V);
A preserves the fibers of the map π_X, i.e. π_X(Ay) = π_X(y) for all y ∈ Gr_p(V) ⇒ deg π_X > 1.

A preserves the Grassmannian Gr_p(V), i.e. A(Gr_p(V)) ⊂ Gr_p(V);
A preserves the fibers of the map π_X, i.e. π_X(Ay) = π_X(y) for all y ∈ Gr_p(V) ⇒ deg π_X > 1.

A preserves the Grassmannian Gr_p(V), i.e. A(Gr_p(V)) ⊂ Gr_p(V);
A preserves the fibers of the map π_X, i.e. π_X(Ay) = π_X(y) for all y ∈ Gr_p(V) ⇒ deg π_X > 1.

Central projections induced by linear automorphisms (continued)

Proposition (F. Sottile, Y. Huang, I.Z)

If $X \subset \wedge^p V$ is induced by a finite order linear automorphism \widehat{A} , then X contains all eigenspaces of A except one.

Theorem (Wei-Liang Chow 1949)

Consider an automorphism \widehat{A} of $\wedge^p V$ such that the corresponding automorphism A of the projective space $\mathbb{P} \wedge^p V$ preserves the Grassmannian $G_p(V)$. Then

(1) either A is induced by a linear automorphism of V,

or, in the case p = m, there exists a nondegenerate bilinear form ω on V such that A is induced by an operation of taking an ω-orthogonal complement,

 $L \in \operatorname{Gr}_p(V) \mapsto L^{\omega} := \{ v \in L, \omega(v, \ell) = 0 \,\forall \ell \in L \}.$

Central projections induced by linear automorphisms (continued)

Proposition (F. Sottile, Y. Huang, I.Z)

If $X \subset \wedge^p V$ is induced by a finite order linear automorphism \widehat{A} , then X contains all eigenspaces of A except one.

Theorem (Wei-Liang Chow 1949)

Consider an automorphism \widehat{A} of $\wedge^{p}V$ such that the corresponding automorphism A of the projective space $\mathbb{P} \wedge^{p} V$ preserves the Grassmannian $G_{p}(V)$. Then

① either A is induced by a linear automorphism of V,

 or, in the case p = m, there exists a nondegenerate bilinear form ω on V such that A is induced by an operation of taking an ω-orthogonal complement,

 $L \in \operatorname{Gr}_p(V) \mapsto L^{\omega} := \{ v \in L, \omega(v, \ell) = 0 \,\forall \ell \in L \}.$

Central projections induced by linear automorphisms (continued)

Proposition (F. Sottile, Y. Huang, I.Z)

If $X \subset \wedge^p V$ is induced by a finite order linear automorphism \widehat{A} , then X contains all eigenspaces of A except one.

Theorem (Wei-Liang Chow 1949)

Consider an automorphism \widehat{A} of $\wedge^p V$ such that the corresponding automorphism A of the projective space $\mathbb{P} \wedge^p V$ preserves the Grassmannian $G_p(V)$. Then

• either A is induced by a linear automorphism of V,

Central projections induced by linear automorphisms (continued)

Proposition (F. Sottile, Y. Huang, I.Z)

If $X \subset \wedge^p V$ is induced by a finite order linear automorphism \widehat{A} , then X contains all eigenspaces of A except one.

Theorem (Wei-Liang Chow 1949)

Consider an automorphism \widehat{A} of $\wedge^{p}V$ such that the corresponding automorphism A of the projective space $\mathbb{P} \wedge^{p} V$ preserves the Grassmannian $G_{p}(V)$. Then

• either A is induced by a linear automorphism of V,

or, in the case p = m, there exists a nondegenerate bilinear form ω on V such that A is induced by an operation of taking an ω-orthogonal complement,

 $L \in \operatorname{Gr}_p(V) \mapsto L^{\omega} := \{ v \in L, \omega(v, \ell) = 0 \,\forall \ell \in L \}.$

Central projections induced by linear automorphisms (continued)

Proposition (F. Sottile, Y. Huang, I.Z)

If $X \subset \wedge^p V$ is induced by a finite order linear automorphism \widehat{A} , then X contains all eigenspaces of A except one.

Theorem (Wei-Liang Chow 1949)

Consider an automorphism \widehat{A} of $\wedge^{p}V$ such that the corresponding automorphism A of the projective space $\mathbb{P} \wedge^{p} V$ preserves the Grassmannian $G_{p}(V)$. Then

• either A is induced by a linear automorphism of V,

or, in the case p = m, there exists a nondegenerate bilinear form ω on V such that A is induced by an operation of taking an ω-orthogonal complement,

 $L \in \operatorname{Gr}_p(V) \mapsto L^{\omega} := \{ v \in L, \omega(v, \ell) = 0 \, \forall \ell \in L \}.$

If $X \subset \wedge^p V$ is induced by a finite order linear automorphism of $\wedge^p V$ of Chow's type 2, then X is also induced by order 2 linear automorphism of Chow's type 2 such that the corresponding bilinear form is either symmetric or skew-symmetric (symplectic).

Note that the pole placement map for a *symmetric control systems* correspond to the case of symplectic form and for a *skew-symmetric* control system corresponds to a *symmetric* form.

Theorem (F. Sottile, Y. Huang, I.Z.)

If $\mathbb{P}X \cap \operatorname{Gr}_p(V) = \emptyset$ and X is induced by a nontrivial linear automorphism of $\wedge^p V$, then p = m and X is induced by a linear automorphism of Chow's type 2 corresponding to a symplectic form on V (i.e., to a Lagrangian involution). If $X \subset \wedge^p V$ is induced by a finite order linear automorphism of $\wedge^p V$ of Chow's type 2, then X is also induced by order 2 linear automorphism of Chow's type 2 such that the corresponding bilinear form is either symmetric or skew-symmetric (symplectic).

Note that the pole placement map for a *symmetric control systems* correspond to the case of *symplectic form* and for a *skew-symmetric* control system corresponds to a *symmetric form*.

Theorem (F. Sottile, Y. Huang, I.Z.)

If $\mathbb{P}X \cap \operatorname{Gr}_p(V) = \emptyset$ and X is induced by a nontrivial linear automorphism of $\wedge^p V$, then p = m and X is induced by a linear automorphism of Chow's type 2 corresponding to a symplectic form on V (i.e., to a Lagrangian involution). If $X \subset \wedge^p V$ is induced by a finite order linear automorphism of $\wedge^p V$ of Chow's type 2, then X is also induced by order 2 linear automorphism of Chow's type 2 such that the corresponding bilinear form is either symmetric or skew-symmetric (symplectic).

Note that the pole placement map for a *symmetric control systems* correspond to the case of *symplectic form* and for a *skew-symmetric* control system corresponds to a *symmetric form*.

Theorem (F. Sottile, Y. Huang, I.Z.)

If $\mathbb{P}X \cap \operatorname{Gr}_p(V) = \emptyset$ and X is induced by a nontrivial linear automorphism of $\wedge^p V$, then p = m and X is induced by a linear automorphism of Chow's type 2 corresponding to a symplectic form on V (i.e., to a Lagrangian involution).

Theorem (F. Sottile, Y. Huang, I.Z.)

If $\mathbb{P}X \cap \operatorname{Gr}_p(V) = \emptyset$, $\operatorname{codim} X > mp + 1$, and the degree of π_X is 2, then *X* is induced by a Lagrangian involution with respect to some symplectic form ω on *V*.

- If m = p = 2 and ℙX ∩ Gr₂(V) = Ø, then the degree of π_X is greater than 1 if and only if X is induced by a Lagrangian involution with respect to some symplectic form ω on V;
- If m = p = 3, $\mathbb{P}X \cap \operatorname{Gr}_3(V) = \emptyset$, and $\dim X \leq 5$, then the degree of π_X is equal to 1;
- If m = p = 3, PX ∩ Gr₃(V) = Ø, and dim X = 6 (which is the minimal possible dimension of X induced by a Lagrangian involution), then the degree of π_X is greater than 1 if and only if X is induced by a Lagrangian involution with respect to some symplectic form ω on V.

Theorem (F. Sottile, Y. Huang, I.Z.)

If $\mathbb{P}X \cap \operatorname{Gr}_p(V) = \emptyset$, $\operatorname{codim} X > mp + 1$, and the degree of π_X is 2, then *X* is induced by a Lagrangian involution with respect to some symplectic form ω on *V*.

- If m = p = 2 and $\mathbb{P}X \cap \operatorname{Gr}_2(V) = \emptyset$, then the degree of π_X is greater than 1 if and only if X is induced by a Lagrangian involution with respect to some symplectic form ω on V;
- 2 If m = p = 3, $\mathbb{P}X \cap \operatorname{Gr}_3(V) = \emptyset$, and $\dim X \leq 5$, then the degree of π_X is equal to 1;
- If m = p = 3, ℙX ∩ Gr₃(V) = Ø, and dim X = 6 (which is the minimal possible dimension of X induced by a Lagrangian involution), then the degree of π_X is greater than 1 if and only if X is induced by a Lagrangian involution with respect to some symplectic form ω on V.

Theorem (F. Sottile, Y. Huang, I.Z.)

If $\mathbb{P}X \cap \operatorname{Gr}_p(V) = \emptyset$, $\operatorname{codim} X > mp + 1$, and the degree of π_X is 2, then *X* is induced by a Lagrangian involution with respect to some symplectic form ω on *V*.

- If m = p = 2 and $\mathbb{P}X \cap \operatorname{Gr}_2(V) = \emptyset$, then the degree of π_X is greater than 1 if and only if X is induced by a Lagrangian involution with respect to some symplectic form ω on V;
- 2 If m = p = 3, $\mathbb{P}X \cap \operatorname{Gr}_3(V) = \emptyset$, and $\dim X \leq 5$, then the degree of π_X is equal to 1;
- If m = p = 3, PX ∩ Gr₃(V) = Ø, and dim X = 6 (which is the minimal possible dimension of X induced by a Lagrangian involution), then the degree of π_X is greater than 1 if and only if X is induced by a Lagrangian involution with respect to some symplectic form ω on V.

Theorem (F. Sottile, Y. Huang, I.Z.)

If $\mathbb{P}X \cap \operatorname{Gr}_p(V) = \emptyset$, $\operatorname{codim} X > mp + 1$, and the degree of π_X is 2, then *X* is induced by a Lagrangian involution with respect to some symplectic form ω on *V*.

- If m = p = 2 and $\mathbb{P}X \cap \operatorname{Gr}_2(V) = \emptyset$, then the degree of π_X is greater than 1 if and only if X is induced by a Lagrangian involution with respect to some symplectic form ω on V;
- 2 If m = p = 3, $\mathbb{P}X \cap \operatorname{Gr}_3(V) = \emptyset$, and $\dim X \leq 5$, then the degree of π_X is equal to 1;
- If m = p = 3, PX ∩ Gr₃(V) = Ø, and dim X = 6 (which is the minimal possible dimension of X induced by a Lagrangian involution), then the degree of π_X is greater than 1 if and only if X is induced by a Lagrangian involution with respect to some symplectic form ω on V.

Consider the linear control system Σ as before, $V = (Y \times U)^*$.

Theorem (F. Sottile, Y. Huang, I.Z.)

If $X_{\Sigma} \cap \operatorname{Gr}_{m}(V) = \emptyset$, $\operatorname{codim} X_{\Sigma} > mp + 1$, and the degree of the pole placement map is 2, then the control system is state-feedback equivalent to a symmetric control system.

- If m = p = 2 and $\mathbb{P}X_{\Sigma} \cap \operatorname{Gr}_2(V) = \emptyset$, then the degree of the pole placement map is greater than 1 if and only the control system is state-feedback equivalent to a symmetric control system;
- 2 If m = p = 3, $\mathbb{P}X_{\Sigma} \cap \operatorname{Gr}_{3}(V) = \emptyset$, and $\dim X \leq 5$, then the degree of the pole placement map is 1;
- If m = p = 3, $\mathbb{P}X_{\Sigma} \cap \operatorname{Gr}_{3}(V) = \emptyset$, and $\dim X = 6$, then the degree of the pole placement map is greater than 1 if and only if the control system is state-feedback equivalent to a symmetric control system.

Consider the linear control system Σ as before, $V = (Y \times U)^*$.

Theorem (F. Sottile, Y. Huang, I.Z.)

If $X_{\Sigma} \cap \operatorname{Gr}_{m}(V) = \emptyset$, $\operatorname{codim} X_{\Sigma} > mp + 1$, and the degree of the pole placement map is 2, then the control system is state-feedback equivalent to a symmetric control system.

- If m = p = 2 and $\mathbb{P}X_{\Sigma} \cap \operatorname{Gr}_2(V) = \emptyset$, then the degree of the pole placement map is greater than 1 if and only the control system is state-feedback equivalent to a symmetric control system;
- 2 If m = p = 3, $\mathbb{P}X_{\Sigma} \cap \operatorname{Gr}_{3}(V) = \emptyset$, and $\dim X \leq 5$, then the degree of the pole placement map is 1;
- If m = p = 3, PX_∑ ∩ Gr₃(V) = Ø, and dim X = 6, then the degree of the pole placement map is greater than 1 if and only if the control system is state-feedback equivalent to a symmetric control system.

Consider the linear control system Σ as before, $V = (Y \times U)^*$.

Theorem (F. Sottile, Y. Huang, I.Z.)

If $X_{\Sigma} \cap \operatorname{Gr}_{m}(V) = \emptyset$, $\operatorname{codim} X_{\Sigma} > mp + 1$, and the degree of the pole placement map is 2, then the control system is state-feedback equivalent to a symmetric control system.

- If m = p = 2 and PX_∑ ∩ Gr₂(V) = Ø, then the degree of the pole placement map is greater than 1 if and only the control system is state-feedback equivalent to a symmetric control system;
- 2 If m = p = 3, $\mathbb{P}X_{\Sigma} \cap \operatorname{Gr}_{3}(V) = \emptyset$, and $\dim X \leq 5$, then the degree of the pole placement map is 1;
- If m = p = 3, PX_∑ ∩ Gr₃(V) = Ø, and dim X = 6, then the degree of the pole placement map is greater than 1 if and only if the control system is state-feedback equivalent to a symmetric control system.

Consider the linear control system Σ as before, $V = (Y \times U)^*$.

Theorem (F. Sottile, Y. Huang, I.Z.)

If $X_{\Sigma} \cap \operatorname{Gr}_{m}(V) = \emptyset$, $\operatorname{codim} X_{\Sigma} > mp + 1$, and the degree of the pole placement map is 2, then the control system is state-feedback equivalent to a symmetric control system.

- If m = p = 2 and $\mathbb{P}X_{\Sigma} \cap \operatorname{Gr}_2(V) = \emptyset$, then the degree of the pole placement map is greater than 1 if and only the control system is state-feedback equivalent to a symmetric control system;
- 2 If m = p = 3, $\mathbb{P}X_{\Sigma} \cap \operatorname{Gr}_{3}(V) = \emptyset$, and $\dim X \leq 5$, then the degree of the pole placement map is 1;
- If m = p = 3, $\mathbb{P}X_{\Sigma} \cap \operatorname{Gr}_{3}(V) = \emptyset$, and $\dim X = 6$, then the degree of the pole placement map is greater than 1 if and only if the control system is state-feedback equivalent to a symmetric control system.

$\Lambda = \operatorname{span}\{f_1(t), f_2(t), \dots, f_p(t)\}, \quad \dim \Lambda = p$ $\operatorname{Wr}(f_1(t), f_2(t), \dots, f_p(t)) := \det \begin{pmatrix} f_1(t) & f_2(t) & \dots & f_p(t) \\ f'_1(t) & f'_2(t) & \dots & f'_p(t) \\ \vdots & \vdots & \ddots & \vdots \\ f_1^{(p-1)}(t) & f_2^{(p-1)}(t) & \dots & f_p^{(p-1)}(t) \end{pmatrix}$

Change of basis — multiplication of Wronskian by a constant

$$\Lambda = \operatorname{span}\{f_1(t), f_2(t), \dots, f_p(t)\}, \quad \dim \Lambda = p$$
$$\operatorname{Wr}(f_1(t), f_2(t), \dots, f_p(t)) := \operatorname{det} \begin{pmatrix} f_1(t) & f_2(t) & \dots & f_p(t) \\ f'_1(t) & f'_2(t) & \dots & f'_p(t) \\ \vdots & \vdots & \ddots & \vdots \\ f_1^{(p-1)}(t) & f_2^{(p-1)}(t) & \dots & f_p^{(p-1)}(t) \end{pmatrix}$$

Change of basis \longrightarrow multiplication of Wronskian by a constant

.

$$\Lambda = \operatorname{span}\{f_1(t), f_2(t), \dots, f_p(t)\}, \quad \dim \Lambda = p$$
$$\operatorname{Wr}(f_1(t), f_2(t), \dots, f_p(t)) := \det \begin{pmatrix} f_1(t) & f_2(t) & \dots & f_p(t) \\ f'_1(t) & f'_2(t) & \dots & f'_p(t) \\ \vdots & \vdots & \ddots & \vdots \\ f_1^{(p-1)}(t) & f_2^{(p-1)}(t) & \dots & f_p^{(p-1)}(t) \end{pmatrix}$$

Change of basis \longrightarrow multiplication of Wronskian by a constant

.

Wronski map (continued)

Consider Linear differential operator

 $Lx = x^{(m+p)}(t) + a_{m+p-1}(t)x^{(m+p-1)}(t) + \dots + a_0(t)x(t)$

Let V_L be the space of solution of Lx = 0.

 $\mathbf{Wr}: \ \mathbf{Gr}_m(V_L) \ \longrightarrow \ \mathbb{P}(\mathcal{C}^\infty) \,.$

- Wronki map is also equivalent to certain central projection π_{X_L} of $\operatorname{Gr}_p(V_L)$ for some $X_L \subset \wedge^p V_L$.
- 2 X_L is induced by a Lagrangian involution if and only if L is equivalent to a self-adjoint L under a transformation $L(x) \mapsto \frac{1}{\mu(\cdot)}L(\mu(\cdot)x(\cdot))$ for some nonzero function μ . In this case $Wr(\Lambda) = Wr(\Lambda^{\omega})$ w.r.t. to the corresponding symplectic form on V_L .
- 3 Condition $X_L \cap \operatorname{Gr}_p(V_L) = \emptyset$ holds automatically if *L* has analytic coefficients and our results on central projections can be reformulated accordingly.

Wronski map (continued)

Consider Linear differential operator

 $Lx = x^{(m+p)}(t) + a_{m+p-1}(t)x^{(m+p-1)}(t) + \dots + a_0(t)x(t)$

Let V_L be the space of solution of Lx = 0.

 $\mathrm{Wr}: \ \mathrm{Gr}_m(V_L) \ \longrightarrow \ \mathbb{P}(\mathcal{C}^\infty) \,.$

• Wronki map is also equivalent to certain central projection π_{X_L} of $\operatorname{Gr}_p(V_L)$ for some $X_L \subset \wedge^p V_L$.

2 X_L is induced by a Lagrangian involution if and only if L is equivalent to a self-adjoint L under a transformation $L(x) \mapsto \frac{1}{\mu(\cdot)} L(\mu(\cdot)x(\cdot))$ for some nonzero function μ . In this case $Wr(\Lambda) = Wr(\Lambda^{\omega})$ w.r.t. to the corresponding symplectic form on V_L .

3 Condition $X_L \cap \operatorname{Gr}_p(V_L) = \emptyset$ holds automatically if L has analytic coefficients and our results on central projections can be reformulated accordingly.

Wronski map (continued)

Consider Linear differential operator

 $Lx = x^{(m+p)}(t) + a_{m+p-1}(t)x^{(m+p-1)}(t) + \dots + a_0(t)x(t)$

Let V_L be the space of solution of Lx = 0.

 $\mathrm{Wr}: \ \mathrm{Gr}_m(V_L) \ \longrightarrow \ \mathbb{P}(\mathcal{C}^\infty) \,.$

- Wronki map is also equivalent to certain central projection π_{X_L} of $\operatorname{Gr}_p(V_L)$ for some $X_L \subset \wedge^p V_L$.
- 2 X_L is induced by a Lagrangian involution if and only if L is equivalent to a self-adjoint L under a transformation $L(x) \mapsto \frac{1}{\mu(\cdot)}L(\mu(\cdot)x(\cdot))$ for some nonzero function μ . In this case $Wr(\Lambda) = Wr(\Lambda^{\omega})$ w.r.t. to the corresponding symplectic form on V_L .
- 3 Condition $X_L \cap \operatorname{Gr}_p(V_L) = \emptyset$ holds automatically if *L* has analytic coefficients and our results on central projections can be reformulated accordingly.
Wronski map (continued)

Consider Linear differential operator

 $Lx = x^{(m+p)}(t) + a_{m+p-1}(t)x^{(m+p-1)}(t) + \dots + a_0(t)x(t)$

Let V_L be the space of solution of Lx = 0.

 $\mathrm{Wr}: \ \mathrm{Gr}_m(V_L) \ \longrightarrow \ \mathbb{P}(\mathcal{C}^\infty) \,.$

• Wronki map is also equivalent to certain central projection π_{X_L} of $\operatorname{Gr}_p(V_L)$ for some $X_L \subset \wedge^p V_L$.

2 X_L is induced by a Lagrangian involution if and only if L is equivalent to a self-adjoint L under a transformation $L(x) \mapsto \frac{1}{\mu(\cdot)} L(\mu(\cdot)x(\cdot))$ for some nonzero function μ . In this case $Wr(\Lambda) = Wr(\Lambda^{\omega})$ w.r.t. to the corresponding symplectic form on V_L .

Condition $X_L \cap \operatorname{Gr}_p(V_L) = \emptyset$ holds automatically if *L* has analytic coefficients and our results on central projections can be reformulated accordingly.

Wronski map (continued)

Consider Linear differential operator

 $Lx = x^{(m+p)}(t) + a_{m+p-1}(t)x^{(m+p-1)}(t) + \dots + a_0(t)x(t)$

Let V_L be the space of solution of Lx = 0.

Wr : $\operatorname{Gr}_m(V_L) \longrightarrow \mathbb{P}(\mathcal{C}^\infty)$.

- Wronki map is also equivalent to certain central projection π_{X_L} of $\operatorname{Gr}_p(V_L)$ for some $X_L \subset \wedge^p V_L$.
- 2 X_L is induced by a Lagrangian involution if and only if L is equivalent to a self-adjoint L under a transformation $L(x) \mapsto \frac{1}{\mu(\cdot)}L(\mu(\cdot)x(\cdot))$ for some nonzero function μ . In this case $Wr(\Lambda) = Wr(\Lambda^{\omega})$ w.r.t. to the corresponding symplectic form on V_L .
- Solution $X_L \cap \operatorname{Gr}_p(V_L) = \emptyset$ holds automatically if *L* has analytic coefficients and our results on central projections can be reformulated accordingly.

Assume that the operator L has analytic coefficients.

Theorem (F. Sottile, Y. Huang, I.Z.)

If $\operatorname{codim} X_L > mp + 1$ and the degree of the Wronski map is 2, then L is equivalent to a self-adjoint operator.

- If m = p = 2, then the degree of the Wronski map is greater than 1 if and only *L* is equivalent to a self-adjoint operator. ;
- If m = p = 3 and $\dim X_L \le 5$, then the degree of the Wronski map is 1;
- If m = p = 3 and dim $X_L = 6$, then the degree of the Wronski map is greater than 1 if and only if the *L* is equivalent to a self-adjoint operator.

Assume that the operator L has analytic coefficients.

Theorem (F. Sottile, Y. Huang, I.Z.)

If $\operatorname{codim} X_L > mp + 1$ and the degree of the Wronski map is 2, then L is equivalent to a self-adjoint operator.

- If m = p = 2, then the degree of the Wronski map is greater than 1 if and only *L* is equivalent to a self-adjoint operator. ;
- 2 If m = p = 3 and $\dim X_L \le 5$, then the degree of the Wronski map is 1;
- 3 If m = p = 3 and dim $X_L = 6$, then the degree of the Wronski map is greater than 1 if and only if the L is equivalent to a self-adjoint operator.

Assume that the operator L has analytic coefficients.

Theorem (F. Sottile, Y. Huang, I.Z.)

If $\operatorname{codim} X_L > mp + 1$ and the degree of the Wronski map is 2, then L is equivalent to a self-adjoint operator.

- If m = p = 2, then the degree of the Wronski map is greater than 1 if and only *L* is equivalent to a self-adjoint operator. ;
- 2 If m = p = 3 and dim $X_L \le 5$, then the degree of the Wronski map is 1;
- If m = p = 3 and dim X_L = 6, then the degree of the Wronski map is greater than 1 if and only if the L is equivalent to a self-adjoint operator.

Assume that the operator L has analytic coefficients.

Theorem (F. Sottile, Y. Huang, I.Z.)

If $\operatorname{codim} X_L > mp + 1$ and the degree of the Wronski map is 2, then L is equivalent to a self-adjoint operator.

- If m = p = 2, then the degree of the Wronski map is greater than 1 if and only *L* is equivalent to a self-adjoint operator. ;
- 2 If m = p = 3 and $\dim X_L \le 5$, then the degree of the Wronski map is 1;
- If m = p = 3 and dim X_L = 6, then the degree of the Wronski map is greater than 1 if and only if the L is equivalent to a self-adjoint operator.

Thanks for your attention.