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Pole placement map
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Pole placement map

¥ =(A,B,C),where A, B, C are complex matrices of sizes N x N,
N xm and p x N such that the linear control system

& = Ax + Bu,
y=Cx
reX=CNyeY=CPueU=C"
is controllable and observable.
Transfer function G(s) = C(sI — A)™'B.

Feedback © = Ky, where K is a m x p matrix K, — closed loop
system & = (A+ BKC)x.

Pole placement map Fx. : Mat,,», — Cn/[s],

F(K)(s) = det(s] — A — BKC).
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Statement of the problem

We assume that V > mp, so F'is not onto (i.e. an arbitrary
configuration of poles is not realizable).
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Statement of the problem

We assume that V > mp, so F'is not onto (i.e. an arbitrary
configuration of poles is not realizable).

Question Under what condition on the control system does the
general polynomial in the image of F' has at least two preimage (or,
equivalently, general realizable configuration of poles is realized at
least by two feedbacks).

Obvious examples:

@ (Symmetric systems or state-feedback equivalent to them)
A= AT, C = BT & G(s) is symmetric. Then F(K) = F(KT);

@ (Skew-symmetric systems or state-feedback equivalent to them)
N is even and for some .J such that J” = —J and J? = —1I, we
have (AJ)T = —AJ, C = —BTJ < G(s) is skew-symmetric.Then
F(K) = F(-KT);

Are these the only examples in the case N > mp when the degree of
F'is greater than 17
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Extending the pole placement map to the

Grassmannian

The map K € Hom(Y,U) — Graph K is the bijection onto the affine
coordinate domain (0 x U)™ of Gr,(Y x U) consisting of all
p-dimensional subspaces transversal to 0 x U.
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Extending the pole placement map to the

Grassmannian

The map K € Hom(Y,U) — Graph K is the bijection onto the affine
coordinate domain (0 x U)™ of Gr,(Y x U) consisting of all
p-dimensional subspaces transversal to 0 x U. Hence, the map F'is
well defined on the affine coordinate domain of Gr, (Y x U):
F(Graph K) := F(K). It can be extended to the whole

Grassmannian: Use the coprime factorization of the transfer function
G(s), G(s) =C(sI — A)™'B = E(s)D(s)™!, det D(s) = det(sI — A).

Then F(Graph K)(s) = F(K)(s) = det ( D(s) K )

E(s) I,
and the extension to Gr,(Y" x U) is given by
o D(S) K1
F(L) = [det < o) )] , (1)

where L € Gr,(Y x U) is spanned by the last p columns of the matrix
in (1) and [-] is an equivalence class in the projective space.
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alternating tensor power of V.
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More general point of view: central projections of

Grassmannian

Let V be a complex vector space (dim V' = m + p) and APV be the pth
alternating tensor power of V.

Pliicker embedding P1 : Gr,(V) — P(APV) :
span(vi,...,vp) = V1 Ava... AU

The image of P1 will be called the Grassmann variety and it will be also
denoted by Gr, (V).

Given a subspace X C APV, let 7x : APV — (APV)/X be the
canonical projection.

This induces amap 7x : PAP V — P(APV/X) U {0} (here

7y ({0}) = PX).

Restrict 7x to Gr,(V')-the central (or linear) projection of Gr,(X) by X.
We are interested in the question when the degree of this restriction is
finite and greater than 17
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Pole placement map via a central projection

r = (50 1 )]

where L € Gr,(Y x U) is spanned by the last p columns of the matrix.
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- D(S) K1
Pl (50 &)
where L € Gr,(Y x U) is spanned by the last p columns of the matrix.

Taking the span of the first m columns of the same matrix at each
s € C, we get a curve s — I'(s), the Hermann-Martin curve of our
control system, in Gr,,,(Y x U). The transfer function G(s) is the
coordinate representation of the Hermann-Martin curve in an affine
chart of Gr,,,(Y x U).

Sp = span,cc{PI(I'(s))} € A™(Y x U)},

Xr = (Sp)t = {w e A"™(Y x U)* : w|s, = 0}

The pole placement map £ is equivalent to the central projection 7.
on Gr,,, ((Y x U)*): There is a bijection L between the image of F and
the image of 7x,. such that L o F(A) = mx,. (A™).
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Some general facts on central projections

Let X C APV, dimV =m + p.

If codim X = dim Gr, (V) + 1 =mp + 1 and PX N Gr,(V) = 0, then the
map 7y is finite and the degree of the map 7 x is equal to

m}(‘ij;g’ﬁ(ﬁﬁﬁ‘l)l (Schubert, 1886)

If codim X > mp + 1, then for generic X the degree of the map nx is
equal to 1.

For which X with codim X > mp + 1 the degree of the map = x is finite
and greater than 17?

Note that if PX N Gr, (V) = () then the map = x is finite.
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Central projections induced by finite order linear maps

First, we want to characterize all X C APV such that there exists a
nontrivial finite order linear automorphism A of APV with the induced
automorphism A of the projective space P AP V' satisfying
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Central projections induced by finite order linear maps

First, we want to characterize all X C APV such that there exists a
nontrivial finite order linear automorphism A of APV with the induced
automorphism A of the projective space P AP V' satisfying

© A preserves the Grassmannian Gr,,(V), i.e. A(Gr,(V)) C Gry(V);

© A preserves the fibers of the map 7, i.e. 7x(Ay) = mx(y) for all
y € Grp(V) = degmyx > 1.

We say that such X is induced by a finite order linear automorphism.
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Central projections induced by linear automorphisms

(continued)

Proposition (F. Sottile, Y. Huang, 1.Z)

If X C APV is induced by a finite order linear automorphism E, then X
contains all eigenspaces of A except one.

51/79



Central projections induced by linear automorphisms

(continued)

Proposition (F. Sottile, Y. Huang, 1.Z)

If X C APV is induced by a finite order linear automorphism A, then X
contains all eigenspaces of A except one.

Theorem (Wei-Liang Chow 1949)

Consider an automorphism A of APV such that the corresponding
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If X C APV is induced by a finite order linear automorphism A, then X
contains all eigenspaces of A except one.

Theorem (Wei-Liang Chow 1949)

Consider an automorphism A of APV such that the corresponding
automorphism A of the projective space P NP V' preserves the
Grassmannian G, (V). Then

@ either A is induced by a linear automorphism of V,
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w onV such that A is induced by an operation of taking an
w-orthogonal complement,
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Central projections induced by linear automorphisms

(continued)

Proposition (F. Sottile, Y. Huang, 1.Z)

If X C APV is induced by a finite order linear automorphism A, then X
contains all eigenspaces of A except one.

Theorem (Wei-Liang Chow 1949)

Consider an automorphism A of APV such that the corresponding
automorphism A of the projective space P NP V' preserves the
Grassmannian G, (V). Then

@ ceither A is induced by a linear automorphism of V,

©Q or, in the case p = m, there exists a nondegenerate bilinear form
w onV such that A is induced by an operation of taking an
w-orthogonal complement,
LeGr(V)— LY :={ve Lw,{) =0Vlec L}
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What special in a Lagrangian involution?

If X € APV is induced by a finite order linear automorphism of APV of
Chow’s type 2, then X is also induced by order 2 linear automorphism
of Chow’s type 2 such that the corresponding bilinear form is either
symmetric or skew-symmetric (symplectic).
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What special in a Lagrangian involution?

If X € APV is induced by a finite order linear automorphism of APV of
Chow’s type 2, then X is also induced by order 2 linear automorphism
of Chow’s type 2 such that the corresponding bilinear form is either
symmetric or skew-symmetric (symplectic).

Note that the pole placement map for a symmetric control systems
correspond to the case of symplectic form and for a skew-symmetric
control system corresponds to a symmetric form.

Theorem (F. Sottile, Y. Huang, |.Z.)

IfPX NGr,(V) =0 and X is induced by a nontrivial linear
automorphism of NPV, then p = m and X is induced by a linear
automorphism of Chow's type 2 corresponding to a symplectic form on
V (i.e., to a Lagrangian involution).
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What is special in Lagrangian involution (continued)

Theorem (F. Sottile, Y. Huang, |.Z.)

IfPX NGr,(V) =0, codim X > mp + 1, and the degree of rx is 2, then

X is induced by a Lagrangian involution with respect to some
symplectic formw on V.
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Theorem (F. Sottile, Y. Huang, |.Z.)

IfPX NGr,(V) =0, codim X > mp + 1, and the degree of rx is 2, then

X is induced by a Lagrangian involution with respect to some
symplectic formw on V.

Theorem (F. Sottile, Y. Huang, |.Z.)

Q Ifm=p=2andPX NGry(V) =0, then the degree of x is
greater than 1 if and only if X is induced by a Lagrangian
involution with respect to some symplectic formw on'V ;

Q Ifm=p=23,PXNGr3(V) =0, anddim X < 5, then the degree of

wx IS equalto1;
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What is special in Lagrangian involution (continued)

Theorem (F. Sottile, Y. Huang, |.Z.)

IfPX NGr,(V) =0, codim X > mp + 1, and the degree of rx is 2, then

X is induced by a Lagrangian involution with respect to some
symplectic formw on V.

Theorem (F. Sottile, Y. Huang, |.Z.)

Q Ifm=p=2andPX NGry(V) =0, then the degree of x is
greater than 1 if and only if X is induced by a Lagrangian
involution with respect to some symplectic formw on'V ;

Q Ifm=p=23,PXNGr3(V) =0, anddim X < 5, then the degree of

wx IS equalto1;

Q Ifm=p=3,PXNGr3(V) =0, anddim X = 6 (which is the
minimal possible dimension of X induced by a Lagrangian

involution), then the degree of wx is greater than 1 if and only if X

is induced by a Lagrangian involution with respect to some
symplectic formw on'V.

£2 /7




Applications to pole placement map

Consider the linear control system X as before , V = (Y x U)*.
Theorem (F. Sottile, Y. Huang, 1.Z.)

If X5, N Grp, (V) = 0, codim X5, > mp + 1, and the degree of the pole
placement map is 2, then the control system is state-feedback
equivalent to a symmetric control system.
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If X5, N Grp, (V) = 0, codim X5, > mp + 1, and the degree of the pole
placement map is 2, then the control system is state-feedback
equivalent to a symmetric control system.

Theorem (F. Sottile, Y. Huang, 1.Z.)

Q@ /fm=p=2andPXyxNGry(V) =0, then the degree of the pole
placement map is greater than 1 if and only the control system is
state-feedback equivalent to a symmetric control system;
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Applications to pole placement map

Consider the linear control system X as before , V = (Y x U)*.

Theorem (F. Sottile, Y. Huang, 1.Z.)

If X5, N Grp, (V) = 0, codim X5, > mp + 1, and the degree of the pole
placement map is 2, then the control system is state-feedback
equivalent to a symmetric control system.

Theorem (F. Sottile, Y. Huang, 1.Z.)

Q@ /fm=p=2andPXyxNGry(V) =0, then the degree of the pole
placement map is greater than 1 if and only the control system is
state-feedback equivalent to a symmetric control system;

Q Ifm=p=3,PXyNGr3(V) =0, anddim X <5, then the degree
of the pole placement map is 1;
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Applications to pole placement map

Consider the linear control system X as before , V = (Y x U)*.

Theorem (F. Sottile, Y. Huang, 1.Z.)

If X5, N Grp, (V) = 0, codim X5, > mp + 1, and the degree of the pole
placement map is 2, then the control system is state-feedback
equivalent to a symmetric control system.

Theorem (F. Sottile, Y. Huang, 1.Z.)

Q@ /fm=p=2andPXyxNGry(V) =0, then the degree of the pole
placement map is greater than 1 if and only the control system is
state-feedback equivalent to a symmetric control system;

Q Ifm=p=3,PXsNGr3(V) =0, anddim X < 5, then the degree
of the pole placement map is 1;

Q Ifm=p=3,PXsNGr3(V) =0, anddim X = 6, then the degree
of the pole placement map is greater than 1 if and only if the
control system is state-feedback equivalent to a symmetric control
system.
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Another application: Wronski map

A:Span{fl(t)vf2(t>7"'>fp(t)}> dimA =p
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Another application: Wronski map

A:Span{fl(t)vf2(t)7"'>fp(t)}> dimA =p

fi(t) @) o (D)
f1(t) L@ )
Wr(f1(t), f2(t), ..., fo(t)) := det : : _ :

OISO A0
Change of basis — multiplication of Wronskian by a constant
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Wronski map (continued)

Consider Linear differential operator
Lo = 2™ (1) + app 1 (O™ PYV(@E) + .+ ag(t)z(t)
Let V}, be the space of solution of Lxz = 0.
Wr : Gr,, (V) — P(C™).
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Wronski map (continued)

Consider Linear differential operator
Lo = 2™ (1) + app 1 (O™ PYV(@E) + .+ ag(t)z(t)
Let V}, be the space of solution of Lxz = 0.
Wr : Gr,, (V) — P(C™).

@ Wronki map is also equivalent to certain central projection 7y, of
Gr, (V) for some X C APV
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Wronski map (continued)

Consider Linear differential operator
Lo = 2™ (1) + app 1 (O™ PYV(@E) + .+ ag(t)z(t)
Let V}, be the space of solution of Lxz = 0.
Wr : Gr,, (V) — P(C™).

@ Wronki map is also equivalent to certain central projection 7y, of
Gr, (V) for some X C APV

© X isinduced by a Lagrangian involution if and only if L is
equivalent to a self-adjoint L under a transformation
L(z) — ﬁL(u(-)x(-)) for some nonzero function .
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Wronski map (continued)

Consider Linear differential operator
Lo = 2™ (1) + app 1 (O™ PYV(@E) + .+ ag(t)z(t)
Let V}, be the space of solution of Lxz = 0.
Wr : Gr,, (V) — P(C™).

@ Wronki map is also equivalent to certain central projection 7y, of
Gr, (V) for some X C APV

© X isinduced by a Lagrangian involution if and only if L is
equivalent to a self-adjoint L under a transformation
L(z) — ﬁL(u(-)x(-)) for some nonzero function .
In this case Wr(A) = Wr(A“) w.r.t. to the corresponding
symplectic form on V7.
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Wronski map (continued)

Consider Linear differential operator
Lo = 2™ (1) + app 1 (O™ PYV(@E) + .+ ag(t)z(t)
Let V}, be the space of solution of Lxz = 0.
Wr : Gr,, (V) — P(C™).

@ Wronki map is also equivalent to certain central projection 7y, of
Gr, (V) for some X C APV

© X isinduced by a Lagrangian involution if and only if L is
equivalent to a self-adjoint L under a transformation
L(z) — ﬁL(u(-)x(-)) for some nonzero function .
In this case Wr(A) = Wr(A“) w.r.t. to the corresponding
symplectic form on V7.

© Condition X, N Gr,(V) = 0 holds automatically if L has analytic
coefficients and our results on central projections can be

reformulated accordingly.
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What is special in self-adjoint linear differential

operators?

Assume that the operator L has analytic coefficients.
Theorem (F. Sottile, Y. Huang, |.Z.)

If codim X1 > mp + 1 and the degree of the Wronski map is 2, then L
is equivalent to a self-adjoint operator.
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What is special in self-adjoint linear differential

operators?

Assume that the operator L has analytic coefficients.

Theorem (F. Sottile, Y. Huang, |.Z.)

If codim X1 > mp + 1 and the degree of the Wronski map is 2, then L
is equivalent to a self-adjoint operator.

Theorem (F. Sottile, Y. Huang, |.Z.)

@ /fm =p =2, then the degree of the Wronski map is greater than
1 ifand only L is equivalent to a self-adjoint operator. ;
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What is special in self-adjoint linear differential

operators?

Assume that the operator L has analytic coefficients.

Theorem (F. Sottile, Y. Huang, |.Z.)

If codim X1 > mp + 1 and the degree of the Wronski map is 2, then L
is equivalent to a self-adjoint operator.

Theorem (F. Sottile, Y. Huang, |.Z.)
@ /fm =p =2, then the degree of the Wronski map is greater than
1 ifand only L is equivalent to a self-adjoint operator. ;

©Q I/fm =p=23anddim X <5, then the degree of the Wronski map
is1;
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What is special in self-adjoint linear differential

operators?

Assume that the operator L has analytic coefficients.

Theorem (F. Sottile, Y. Huang, |.Z.)

If codim X, > mp + 1 and the degree of the Wronski map is 2, then L
is equivalent to a self-adjoint operator.

Theorem (F. Sottile, Y. Huang, |.Z.)

@ /fm =p =2, then the degree of the Wronski map is greater than
1 ifand only L is equivalent to a self-adjoint operator. ;

©Q I/fm =p=23anddim X <5, then the degree of the Wronski map
is1;

©Q /fm=p=3anddim X; = 6, then the degree of the Wronski

map is greater than 1 if and only if the L is equivalent to a
self-adjoint operator.
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Thanks for your attention.



