SFEMaNS  version 5.3
Reference documentation for SFEMaNS
condlim_test_10.f90
Go to the documentation of this file.
2  USE my_util
3  USE def_type_mesh
4  USE input_data
5 !!$ATTENTION
6 !!$Some subroutines have been commented to avoid warning messages when compiling executable.
7 !!$It can not be done in the module boundary_generic that expects all subroutines to be present.
8 !!$END ATTENTION
9 !!$ PUBLIC :: init_velocity_pressure
10 !!$ PUBLIC :: init_temperature
11 !!$ PUBLIC :: init_level_set
12 !!$ PUBLIC :: source_in_NS_momentum
13 !!$ PUBLIC :: source_in_temperature
14 !!$ PUBLIC :: source_in_level_set
15 !!$ PUBLIC :: vv_exact
16 !!$ PUBLIC :: imposed_velocity_by_penalty
17 !!$ PUBLIC :: pp_exact
18 !!$ PUBLIC :: temperature_exact
19 !!$ PUBLIC :: level_set_exact
20 !!$ PUBLIC :: penal_in_real_space
21 !!$ PUBLIC :: extension_velocity
22  PUBLIC :: vexact
23 !!$ PUBLIC :: H_B_quasi_static
24  PUBLIC :: hexact
25  PUBLIC :: phiexact
26  PUBLIC :: jexact_gauss
27  PUBLIC :: eexact_gauss
28  PUBLIC :: init_maxwell
29 !!$ PUBLIC :: mu_bar_in_fourier_space
30 !!$ PUBLIC :: grad_mu_bar_in_fourier_space
31 !!$ PUBLIC :: mu_in_real_space
32  PRIVATE
33 
34  REAL (KIND=8), PRIVATE :: alpha=1.d0, beta=1.d0
35 
36 CONTAINS
37  !===============================================================================
38  ! Boundary conditions for Navier-Stokes
39  !===============================================================================
40 
41 !!$ !===Initialize velocity, pressure
42 !!$ SUBROUTINE init_velocity_pressure(mesh_f, mesh_c, time, dt, list_mode, &
43 !!$ un_m1, un, pn_m1, pn, phin_m1, phin)
44 !!$ IMPLICIT NONE
45 !!$ TYPE(mesh_type) :: mesh_f, mesh_c
46 !!$ REAL(KIND=8), INTENT(OUT):: time
47 !!$ REAL(KIND=8), INTENT(IN) :: dt
48 !!$ INTEGER, DIMENSION(:), INTENT(IN) :: list_mode
49 !!$ REAL(KIND=8), DIMENSION(:,:,:), INTENT(OUT):: un_m1, un
50 !!$ REAL(KIND=8), DIMENSION(:,:,:), INTENT(OUT):: pn_m1, pn, phin_m1, phin
51 !!$ INTEGER :: mode, i, j
52 !!$ REAL(KIND=8), DIMENSION(mesh_c%np) :: pn_m2
53 !!$
54 !!$ time = 0.d0
55 !!$ DO i= 1, SIZE(list_mode)
56 !!$ mode = list_mode(i)
57 !!$ DO j = 1, 6
58 !!$ !===velocity
59 !!$ un_m1(:,j,i) = vv_exact(j,mesh_f%rr,mode,time-dt)
60 !!$ un (:,j,i) = vv_exact(j,mesh_f%rr,mode,time)
61 !!$ END DO
62 !!$ DO j = 1, 2
63 !!$ !===pressure
64 !!$ pn_m2(:) = pp_exact(j,mesh_c%rr,mode,time-2*dt)
65 !!$ pn_m1 (:,j,i) = pp_exact(j,mesh_c%rr,mode,time-dt)
66 !!$ pn (:,j,i) = pp_exact(j,mesh_c%rr,mode,time)
67 !!$ phin_m1(:,j,i) = pn_m1(:,j,i) - pn_m2(:)
68 !!$ phin (:,j,i) = Pn (:,j,i) - pn_m1(:,j,i)
69 !!$ ENDDO
70 !!$ ENDDO
71 !!$ END SUBROUTINE init_velocity_pressure
72 
73 !!$ !===Initialize temperature
74 !!$ SUBROUTINE init_temperature(mesh, time, dt, list_mode, tempn_m1, tempn)
75 !!$ IMPLICIT NONE
76 !!$ TYPE(mesh_type) :: mesh
77 !!$ REAL(KIND=8), INTENT(OUT):: time
78 !!$ REAL(KIND=8), INTENT(IN) :: dt
79 !!$ INTEGER, DIMENSION(:), INTENT(IN) :: list_mode
80 !!$ REAL(KIND=8), DIMENSION(:,:,:), INTENT(OUT):: tempn_m1, tempn
81 !!$ INTEGER :: mode, i, j
82 !!$
83 !!$ time = 0.d0
84 !!$ DO i= 1, SIZE(list_mode)
85 !!$ mode = list_mode(i)
86 !!$ DO j = 1, 2
87 !!$ tempn_m1(:,j,i) = temperature_exact(j, mesh%rr, mode, time-dt)
88 !!$ tempn (:,j,i) = temperature_exact(j, mesh%rr, mode, time)
89 !!$ ENDDO
90 !!$ ENDDO
91 !!$ END SUBROUTINE init_temperature
92 
93 !!$ !===Initialize level_set
94 !!$ SUBROUTINE init_level_set(vv_mesh, time, &
95 !!$ dt, list_mode, level_set_m1, level_set)
96 !!$ IMPLICIT NONE
97 !!$ TYPE(mesh_type) :: vv_mesh
98 !!$ REAL(KIND=8), INTENT(OUT):: time
99 !!$ REAL(KIND=8), INTENT(IN) :: dt
100 !!$ INTEGER, DIMENSION(:), INTENT(IN) :: list_mode
101 !!$ REAL(KIND=8), DIMENSION(:,:,:,:), INTENT(OUT):: level_set, level_set_m1
102 !!$ INTEGER :: mode, i, j, n
103 !!$
104 !!$ time = 0.d0
105 !!$ DO i= 1, SIZE(list_mode)
106 !!$ mode = list_mode(i)
107 !!$ DO j = 1, 2
108 !!$ !===level_set
109 !!$ DO n = 1, inputs%nb_fluid -1
110 !!$ level_set_m1(n,:,j,i) = level_set_exact(n,j,vv_mesh%rr,mode,time-dt)
111 !!$ level_set (n,:,j,i) = level_set_exact(n,j,vv_mesh%rr,mode,time)
112 !!$ END DO
113 !!$ END DO
114 !!$ END DO
115 !!$
116 !!$ END SUBROUTINE init_level_set
117 
118 !!$ !===Source in momemtum equation. Always called.
119 !!$ FUNCTION source_in_NS_momentum(TYPE, rr, mode, i, time, Re, ty, opt_density, opt_tempn) RESULT(vv)
120 !!$ IMPLICIT NONE
121 !!$ INTEGER , INTENT(IN) :: TYPE
122 !!$ REAL(KIND=8), DIMENSION(:,:), INTENT(IN) :: rr
123 !!$ INTEGER , INTENT(IN) :: mode, i
124 !!$ REAL(KIND=8), INTENT(IN) :: time
125 !!$ REAL(KIND=8), INTENT(IN) :: Re
126 !!$ CHARACTER(LEN=2), INTENT(IN) :: ty
127 !!$ REAL(KIND=8), DIMENSION(:,:,:), OPTIONAL, INTENT(IN) :: opt_density
128 !!$ REAL(KIND=8), DIMENSION(:,:,:), OPTIONAL, INTENT(IN) :: opt_tempn
129 !!$ REAL(KIND=8), DIMENSION(SIZE(rr,2)) :: vv
130 !!$
131 !!$ vv = 0.d0
132 !!$ CALL error_petsc('source_in_NS_momentum: should not be called for this test')
133 !!$ RETURN
134 !!$ END FUNCTION source_in_NS_momentum
135 
136 !!$ !===Extra source in temperature equation. Always called.
137 !!$ FUNCTION source_in_temperature(TYPE, rr, m, t)RESULT(vv)
138 !!$ IMPLICIT NONE
139 !!$ INTEGER , INTENT(IN) :: TYPE
140 !!$ REAL(KIND=8), DIMENSION(:,:), INTENT(IN) :: rr
141 !!$ INTEGER , INTENT(IN) :: m
142 !!$ REAL(KIND=8), INTENT(IN) :: t
143 !!$ REAL(KIND=8), DIMENSION(SIZE(rr,2)) :: vv
144 !!$
145 !!$ vv = 0.d0
146 !!$ CALL error_petsc('source_in_temperature: should not be called for this test')
147 !!$ RETURN
148 !!$ END FUNCTION source_in_temperature
149 
150 !!$ !===Extra source in level set equation. Always called.
151 !!$ FUNCTION source_in_level_set(interface_nb,TYPE, rr, m, t)RESULT(vv)
152 !!$ IMPLICIT NONE
153 !!$ INTEGER , INTENT(IN) :: TYPE
154 !!$ REAL(KIND=8), DIMENSION(:,:), INTENT(IN) :: rr
155 !!$ INTEGER , INTENT(IN) :: m, interface_nb
156 !!$ REAL(KIND=8), INTENT(IN) :: t
157 !!$ REAL(KIND=8), DIMENSION(SIZE(rr,2)) :: vv
158 !!$
159 !!$ vv=0.d0
160 !!$ CALL error_petsc('sourece_in_temperature: should not be called for this test')
161 !!$ END FUNCTION source_in_level_set
162 
163 !!$ !===Velocity for boundary conditions in Navier-Stokes.
164 !!$ !===Can be used also to initialize velocity in: init_velocity_pressure_temperature
165 !!$ FUNCTION vv_exact(TYPE,rr,m,t) RESULT(vv)
166 !!$ IMPLICIT NONE
167 !!$ INTEGER , INTENT(IN) :: TYPE
168 !!$ REAL(KIND=8), DIMENSION(:,:), INTENT(IN) :: rr
169 !!$ INTEGER, INTENT(IN) :: m
170 !!$ REAL(KIND=8), INTENT(IN) :: t
171 !!$ REAL(KIND=8), DIMENSION(SIZE(rr,2)) :: vv
172 !!$
173 !!$ vv(:) = 0.d0
174 !!$ CALL error_petsc('vv_exact: should not be called for this test')
175 !!$ RETURN
176 !!$ END FUNCTION vv_exact
177 
178 !!$ !===Solid velocity imposed when using penalty technique
179 !!$ !===Defined in Fourier space on mode 0 only.
180 !!$ FUNCTION imposed_velocity_by_penalty(rr,t) RESULT(vv)
181 !!$ IMPLICIT NONE
182 !!$ REAL(KIND=8), DIMENSION(:,:), INTENT(IN) :: rr
183 !!$ REAL(KIND=8), INTENT(IN) :: t
184 !!$ REAL(KIND=8), DIMENSION(SIZE(rr,2),6) :: vv
185 !!$
186 !!$ vv=0.d0
187 !!$ RETURN
188 !!$ END FUNCTION imposed_velocity_by_penalty
189 
190 !!$ !===Pressure for boundary conditions in Navier-Stokes.
191 !!$ !===Can be used also to initialize pressure in the subroutine init_velocity_pressure.
192 !!$ !===Use this routine for outflow BCs only.
193 !!$ !===CAUTION: Do not enfore BCs on pressure where normal component
194 !!$ ! of velocity is prescribed.
195 !!$ FUNCTION pp_exact(TYPE,rr,m,t) RESULT (vv)
196 !!$ IMPLICIT NONE
197 !!$ INTEGER , INTENT(IN) :: TYPE
198 !!$ REAL(KIND=8), DIMENSION(:,:), INTENT(IN) :: rr
199 !!$ INTEGER , INTENT(IN) :: m
200 !!$ REAL(KIND=8), INTENT(IN) :: t
201 !!$ REAL(KIND=8), DIMENSION(SIZE(rr,2)) :: vv
202 !!$
203 !!$ vv=0.d0
204 !!$ CALL error_petsc('pp_exact: should not be called for this test')
205 !!$ RETURN
206 !!$ END FUNCTION pp_exact
207 
208 !!$ !===Temperature for boundary conditions in temperature equation.
209 !!$ FUNCTION temperature_exact(TYPE,rr,m,t) RESULT (vv)
210 !!$ IMPLICIT NONE
211 !!$ INTEGER , INTENT(IN) :: TYPE
212 !!$ REAL(KIND=8), DIMENSION(:,:), INTENT(IN) :: rr
213 !!$ INTEGER , INTENT(IN) :: m
214 !!$ REAL(KIND=8), INTENT(IN) :: t
215 !!$ REAL(KIND=8), DIMENSION(SIZE(rr,2)) :: vv
216 !!$
217 !!$ vv = 0.d0
218 !!$ CALL error_petsc('temperature_exact: should not be called for this test')
219 !!$ RETURN
220 !!$ END FUNCTION temperature_exact
221 
222 !!$ !===Can be used to initialize level set in the subroutine init_level_set.
223 !!$ FUNCTION level_set_exact(interface_nb,TYPE,rr,m,t) RESULT (vv)
224 !!$ IMPLICIT NONE
225 !!$ INTEGER , INTENT(IN) :: TYPE
226 !!$ REAL(KIND=8), DIMENSION(:,:), INTENT(IN) :: rr
227 !!$ INTEGER , INTENT(IN) :: m, interface_nb
228 !!$ REAL(KIND=8), INTENT(IN) :: t
229 !!$ REAL(KIND=8), DIMENSION(SIZE(rr,2)) :: vv
230 !!$
231 !!$ vv = 0.d0
232 !!$ CALL error_petsc('level_set_exact: should not be called for this test')
233 !!$ RETURN
234 !!$
235 !!$ END FUNCTION level_set_exact
236 
237 !!$ !===Penalty coefficient (if needed)
238 !!$ !===This coefficient is equal to zero in subdomain
239 !!$ !===where penalty is applied (penalty is zero in solid)
240 !!$ FUNCTION penal_in_real_space(mesh,rr_gauss,angles,nb_angles,nb,ne,time) RESULT(vv)
241 !!$ IMPLICIT NONE
242 !!$ TYPE(mesh_type) :: mesh
243 !!$ REAL(KIND=8), DIMENSION(:,:), INTENT(IN) :: rr_gauss
244 !!$ REAL(KIND=8), DIMENSION(:), INTENT(IN) :: angles
245 !!$ INTEGER, INTENT(IN) :: nb_angles
246 !!$ INTEGER, INTENT(IN) :: nb, ne
247 !!$ REAL(KIND=8), INTENT(IN) :: time
248 !!$ REAL(KIND=8), DIMENSION(nb_angles,ne-nb+1) :: vv
249 !!$
250 !!$ vv = 1.d0
251 !!$ CALL error_petsc('penal_in_real_space: should not be called for this test')
252 !!$ RETURN
253 !!$ END FUNCTION penal_in_real_space
254 
255 !!$ !===Extension of the velocity field in the solid.
256 !!$ !===Used when temperature or Maxwell equations are solved.
257 !!$ !===It extends the velocity field on the Navier-Stokes domain to a
258 !!$ !===velocity field on the temperature and the Maxwell domain.
259 !!$ !===It is also used if problem type=mxw and restart velocity
260 !!$ !===is set to true in data (type problem denoted mxx in the code).
261 !!$ FUNCTION extension_velocity(TYPE, H_mesh, mode, t, n_start) RESULT(vv)
262 !!$ IMPLICIT NONE
263 !!$ TYPE(mesh_type), INTENT(IN) :: H_mesh
264 !!$ INTEGER , INTENT(IN) :: TYPE, n_start
265 !!$ INTEGER, INTENT(IN) :: mode
266 !!$ REAL(KIND=8), INTENT(IN) :: t
267 !!$ REAL(KIND=8), DIMENSION(H_Mesh%np) :: vv
268 !!$
269 !!$ vv = 0.d0
270 !!$ RETURN
271 !!$
272 !!$ END FUNCTION extension_velocity
273 
274  !===============================================================================
275  ! Boundary conditions for Maxwell
276  !===============================================================================
277  !===Velocity used in the induction equation.
278  !===Used only if problem type is mxw and restart velocity is false
279  FUNCTION vexact(m, H_mesh) RESULT(vv) !Set uniquement a l'induction
280  IMPLICIT NONE
281  TYPE(mesh_type), INTENT(IN) :: H_mesh
282  INTEGER, INTENT(IN) :: m
283  REAL(KIND=8), DIMENSION(H_mesh%np,6) :: vv
284  REAL(KIND=8), DIMENSION(:), POINTER :: r, z
285 
286  IF (m==0) THEN
287  vv = 0
288  RETURN
289  END IF
290  r => h_mesh%rr(1,:)
291  z => h_mesh%rr(2,:)
292  vv(:,1) = alpha*z*(r**(m-1))*m !-alpha*z*gamma/r**(m+1)*m
293  vv(:,2) = beta *z*(r**(m-1))*m !-beta *z*gamma/r**(m+1)*m
294  vv(:,3) = beta *z*(r**(m-1))*m !+beta *z*gamma/r**(m+1)*m
295  vv(:,4) =-alpha*z*(r**(m-1))*m !-alpha*z*gamma/r**(m+1)*m
296  vv(:,5) = alpha*(r**m) !+ alpha*gamma/r**m)
297  vv(:,6) = beta *(r**m) !+ beta*gamma/r**m)
298  vv = vv/m**3
299  RETURN
300  END FUNCTION vexact
301 
302 !!$ !===Magnetic field and magnetic induction for quasi-static approximation
303 !!$ !===if needed
304 !!$ FUNCTION H_B_quasi_static(char_h_b, rr, m) RESULT(vv)
305 !!$ IMPLICIT NONE
306 !!$ CHARACTER(LEN=1), INTENT(IN) :: char_h_b
307 !!$ REAL(KIND=8), DIMENSION(:,:), INTENT(IN) :: rr
308 !!$ INTEGER, INTENT(IN) :: m
309 !!$ REAL(KIND=8), DIMENSION(SIZE(rr,2),6) :: vv
310 !!$
311 !!$ vv = 0.d0
312 !!$ RETURN
313 !!$ END FUNCTION H_B_quasi_static
314 
315  !===Magnetic field for boundary conditions in the Maxwell equations.
316  FUNCTION hexact(H_mesh,TYPE, rr, m, mu_H_field, t) RESULT(vv)
317  IMPLICIT NONE
318  TYPE(mesh_type), INTENT(IN) :: H_mesh
319  INTEGER , INTENT(IN) :: TYPE
320  REAL(KIND=8), DIMENSION(:,:), INTENT(IN) :: rr
321  INTEGER , INTENT(IN) :: m
322  REAL(KIND=8), INTENT(IN) :: t
323  REAL(KIND=8), DIMENSION(:), INTENT(IN) :: mu_H_field
324  REAL(KIND=8), DIMENSION(SIZE(rr,2)) :: vv
325  REAL(KIND=8), DIMENSION(SIZE(rr,2)) :: r, z
326  REAL(KIND=8) :: muH
327 
328  IF (maxval(mu_h_field) /= minval(mu_h_field)) THEN
329  CALL error_petsc(' BUG in condlim, mu not constant')
330  END IF
331  muh=mu_h_field(1)
332  r = rr(1,:)
333  z = rr(2,:)
334  IF (m==0) THEN
335  vv = 0
336  RETURN
337  END IF
338  IF (TYPE == 1) then
339  vv = alpha*z*(r**(m-1))*m !-alpha*z*gamma/r**(m+1)*m
340  ELSEIF (TYPE == 2) then
341  vv = beta *z*(r**(m-1))*m !-beta *z*gamma/r**(m+1)*m
342  ELSEIF (TYPE ==3) then
343  vv = beta *z*(r**(m-1))*m !+beta *z*gamma/r**(m+1)*m
344  ELSEIF (TYPE == 4) then
345  vv =-alpha*z*(r**(m-1))*m !+-alpha*z*gamma/r**(m+1)*m
346  ELSEIF (TYPE == 5) then
347  vv = alpha*(r**m) ! + alpha*(gamma/r**m)
348  ELSEIF (TYPE == 6) then
349  vv = beta *(r**m) ! + beta *(gamma/r**m)
350  ENDIF
351  vv = (vv/muh)*cos(t)/m**3
352  RETURN
353 
354  !===Dummies variables to avoid warning
355  r=h_mesh%rr(1,1)
356  !===Dummies variables to avoid warning
357  END FUNCTION hexact
358 
359  !===Scalar potential for boundary conditions in the Maxwell equations.
360  FUNCTION phiexact(TYPE, rr, m, mu_phi,t) RESULT(vv)
361  IMPLICIT NONE
362  INTEGER , INTENT(IN) :: TYPE
363  REAL(KIND=8), DIMENSION(:,:), INTENT(IN) :: rr
364  INTEGER , INTENT(IN) :: m
365  REAL(KIND=8), INTENT(IN) :: mu_phi, t
366  REAL(KIND=8), DIMENSION(SIZE(rr,2)) :: vv
367  REAL(KIND=8) :: r
368  INTEGER :: n
369 
370  vv=0.d0
371  CALL error_petsc('Phiexact: should not be called for this test')
372  RETURN
373 
374  !===Dummies variables to avoid warning
375  n=type; n=m; r=rr(1,1); r=mu_phi; r=t
376  !===Dummies variables to avoid warning
377  END FUNCTION phiexact
378 
379  !===Current in Ohm's law. Curl(H) = sigma(E + uxB) + current
380  FUNCTION jexact_gauss(TYPE, rr, m, mu_phi, sigma, mu_H, t, mesh_id, opt_B_ext) RESULT(vv)
381  IMPLICIT NONE
382  INTEGER , INTENT(IN) :: TYPE
383  REAL(KIND=8), DIMENSION(:), INTENT(IN) :: rr
384  INTEGER , INTENT(IN) :: m
385  REAL(KIND=8), INTENT(IN) :: mu_phi, sigma, mu_H, t
386  INTEGER , INTENT(IN) :: mesh_id
387  REAL(KIND=8), DIMENSION(6), OPTIONAL,INTENT(IN) :: opt_B_ext
388  REAL(KIND=8) :: vv
389  REAL(KIND=8) :: r
390  INTEGER :: n
391 
392  vv = -sigma* eexact_gauss(TYPE, rr, m, mu_phi, sigma, mu_H, t)
393  RETURN
394 
395  !===Dummies variables to avoid warning
396  n=mesh_id
397  IF (PRESENT(opt_b_ext)) r=opt_b_ext(1)
398  !===Dummies variables to avoid warning
399  END FUNCTION jexact_gauss
400 
401  !===Electric field for Neumann BC (cf. doc)
402  FUNCTION eexact_gauss(TYPE, rr, m, mu_phi, sigma, mu_H, t) RESULT(vv)
403  IMPLICIT NONE
404  INTEGER, INTENT(IN) :: TYPE
405  REAL(KIND=8), DIMENSION(:), INTENT(IN) :: rr
406  INTEGER, INTENT(IN) :: m
407  REAL(KIND=8), INTENT(IN) :: mu_phi, sigma, mu_H, t
408  REAL(KIND=8) :: vv
409  REAL(KIND=8) :: r, z
410 
411  r = rr(1)
412  z = rr(2)
413  vv = 0.d0
414 
415  IF (m == 0) RETURN
416  IF (TYPE == 1) then
417  vv = 0.d0
418  ELSEIF (TYPE == 2) then
419  vv = 0.d0
420  ELSEIF (TYPE ==3) then
421  vv = alpha*(-1.d0/(m+2)*r**(m+1)) ! + alpha*(1.d0/(m-2)*gamma/r**(m-1))
422  ELSEIF (TYPE == 4) then
423  vv = beta *(-1.d0/(m+2)*r**(m+1)) !+ beta *(1.d0/(m-2)*gamma/r**(m-1))
424  ELSEIF (TYPE == 5) then
425  vv = beta*z*(r**m) ! beta*z*(-gamma/r**m)
426  ELSEIF (TYPE == 6) then
427  vv =-alpha*z*(r**m) ! -alpha*z*(-gamma/r**m)
428  ENDIF
429  vv = -vv*sin(t)/m**3
430  RETURN
431 
432  !===Dummies variables to avoid warning
433  r=mu_phi; r=sigma; r=mu_h
434  !===Dummies variables to avoid warning
435  END FUNCTION eexact_gauss
436 
437  !===Initialization of magnetic field and scalar potential (if present)
438  SUBROUTINE init_maxwell(H_mesh, phi_mesh, time, dt, mu_H_field, mu_phi, &
439  list_mode, hn1, hn, phin1, phin)
440  IMPLICIT NONE
441  TYPE(mesh_type) :: H_mesh, phi_mesh
442  REAL(KIND=8), INTENT(OUT):: time
443  REAL(KIND=8), INTENT(IN) :: dt
444  REAL(KIND=8), DIMENSION(:), INTENT(IN) :: mu_H_field
445  REAL(KIND=8), INTENT(IN) :: mu_phi
446  INTEGER, DIMENSION(:), INTENT(IN) :: list_mode
447  REAL(KIND=8), DIMENSION(:,:,:), INTENT(OUT):: Hn, Hn1
448  REAL(KIND=8), DIMENSION(:,:,:), INTENT(OUT):: phin, phin1
449  INTEGER :: i, k
450 
451  time = -dt
452  DO k=1,6
453  DO i=1, SIZE(list_mode)
454  hn1(:,k,i) = hexact(h_mesh,k, h_mesh%rr, list_mode(i), mu_h_field, time)
455  IF (inputs%nb_dom_phi>0) THEN
456  IF (k<3) THEN
457  phin1(:,k,i) = phiexact(k, phi_mesh%rr, list_mode(i) , mu_phi, time)
458  ENDIF
459  END IF
460  ENDDO
461  ENDDO
462 
463  time = time + dt
464  DO k=1,6
465  DO i=1, SIZE(list_mode)
466  hn(:,k,i) = hexact(h_mesh,k, h_mesh%rr, list_mode(i), mu_h_field, time)
467  IF (inputs%nb_dom_phi>0) THEN
468  IF (k<3) THEN
469  phin(:,k,i) = phiexact(k, phi_mesh%rr, list_mode(i), mu_phi, time)
470  ENDIF
471  END IF
472  ENDDO
473  ENDDO
474  END SUBROUTINE init_maxwell
475 
476 !!$ !===Analytical permeability (if needed)
477 !!$ !===This function is not needed unless the flag
478 !!$ !=== ===Use FEM Interpolation for magnetic permeability (true/false)
479 !!$ !===is activated and set to .FALSE. in the data data file. Default is .TRUE.
480 !!$ FUNCTION mu_bar_in_fourier_space(H_mesh,nb,ne,pts,pts_ids) RESULT(vv)
481 !!$ IMPLICIT NONE
482 !!$ TYPE(mesh_type), INTENT(IN) :: H_mesh
483 !!$ REAL(KIND=8), DIMENSION(ne-nb+1) :: vv
484 !!$ INTEGER, INTENT(IN) :: nb, ne
485 !!$ REAL(KIND=8),DIMENSION(2,ne-nb+1),OPTIONAL :: pts
486 !!$ INTEGER, DIMENSION(ne-nb+1), OPTIONAL :: pts_ids
487 !!$
488 !!$ vv = 1.d0
489 !!$ CALL error_petsc('mu_bar_in_fourier_space: should not be called for this test')
490 !!$ RETURN
491 !!$ END FUNCTION mu_bar_in_fourier_space
492 
493 !!$ !===Analytical mu_in_fourier_space (if needed)
494 !!$ !===This function is not needed unless the flag
495 !!$ !=== ===Use FEM Interpolation for magnetic permeability (true/false)
496 !!$ !===is activated and set to .FALSE. in the data data file. Default is .TRUE.
497 !!$ FUNCTION grad_mu_bar_in_fourier_space(pt,pt_id) RESULT(vv)
498 !!$ IMPLICIT NONE
499 !!$ REAL(KIND=8),DIMENSION(2), INTENT(in):: pt
500 !!$ INTEGER,DIMENSION(1), INTENT(in) :: pt_id
501 !!$ REAL(KIND=8),DIMENSION(2) :: vv
502 !!$
503 !!$ vv=0.d0
504 !!$ CALL error_petsc('grad_mu_bar_in_fourier_space: should not be called for this test')
505 !!$ RETURN
506 !!$ END FUNCTION grad_mu_bar_in_fourier_space
507 
508 !!$ !===Analytical permeability, mu in real space (if needed)
509 !!$ FUNCTION mu_in_real_space(H_mesh,angles,nb_angles,nb,ne,time) RESULT(vv)
510 !!$ IMPLICIT NONE
511 !!$ TYPE(mesh_type), INTENT(IN) :: H_mesh
512 !!$ REAL(KIND=8), DIMENSION(:), INTENT(IN) :: angles
513 !!$ INTEGER, INTENT(IN) :: nb_angles
514 !!$ INTEGER, INTENT(IN) :: nb, ne
515 !!$ REAL(KIND=8), INTENT(IN) :: time
516 !!$ REAL(KIND=8), DIMENSION(nb_angles,ne-nb+1) :: vv
517 !!$
518 !!$
519 !!$ vv = 1.d0
520 !!$ CALL error_petsc('mu_in_real_space: should not be called for this test')
521 !!$ RETURN
522 !!$ END FUNCTION mu_in_real_space
523 
524 END MODULE boundary_test_10
subroutine error_petsc(string)
Definition: my_util.f90:16
type(my_data), public inputs
real(kind=8) function, dimension(size(rr, 2)), public hexact(H_mesh, TYPE, rr, m, mu_H_field, t)
real(kind=8) function, dimension(size(rr, 2)), public phiexact(TYPE, rr, m, mu_phi, t)
real(kind=8), private beta
real(kind=8), private alpha
subroutine, public init_maxwell(H_mesh, phi_mesh, time, dt, mu_H_field, mu_phi, list_mode, Hn1, Hn, phin1, phin)
real(kind=8) function, public jexact_gauss(TYPE, rr, m, mu_phi, sigma, mu_H, t, mesh_id, opt_B_ext)
real(kind=8) function, dimension(h_mesh%np, 6), public vexact(m, H_mesh)
real(kind=8) function, public eexact_gauss(TYPE, rr, m, mu_phi, sigma, mu_H, t)