SFEMaNS  version 5.3
Reference documentation for SFEMaNS
condlim_test_18.f90
Go to the documentation of this file.
2  USE my_util
3  USE def_type_mesh
4  USE input_data
5  USE test_18
6 !!$ATTENTION
7 !!$Some subroutines have been commented to avoid warning messages when compiling executable.
8 !!$It can not be done in the module boundary_generic that expects all subroutines to be present.
9 !!$END ATTENTION
10 !!$ PUBLIC :: init_velocity_pressure
11 !!$ PUBLIC :: init_temperature
12 !!$ PUBLIC :: init_level_set
13 !!$ PUBLIC :: source_in_NS_momentum
14 !!$ PUBLIC :: source_in_temperature
15 !!$ PUBLIC :: source_in_level_set
16 !!$ PUBLIC :: vv_exact
17 !!$ PUBLIC :: imposed_velocity_by_penalty
18 !!$ PUBLIC :: pp_exact
19 !!$ PUBLIC :: temperature_exact
20 !!$ PUBLIC :: level_set_exact
21 !!$ PUBLIC :: penal_in_real_space
22 !!$ PUBLIC :: extension_velocity
23  PUBLIC :: vexact
24 !!$ PUBLIC :: H_B_quasi_static
25  PUBLIC :: hexact
26  PUBLIC :: phiexact
27  PUBLIC :: jexact_gauss
28  PUBLIC :: eexact_gauss
29  PUBLIC :: init_maxwell
30  PUBLIC :: mu_bar_in_fourier_space
32 !!$ PUBLIC :: mu_in_real_space
33  PRIVATE
34 
35 CONTAINS
36  !===============================================================================
37  ! Boundary conditions for Navier-Stokes
38  !===============================================================================
39 
40 !!$ !===Initialize velocity, pressure
41 !!$ SUBROUTINE init_velocity_pressure(mesh_f, mesh_c, time, dt, list_mode, &
42 !!$ un_m1, un, pn_m1, pn, phin_m1, phin)
43 !!$ IMPLICIT NONE
44 !!$ TYPE(mesh_type) :: mesh_f, mesh_c
45 !!$ REAL(KIND=8), INTENT(OUT):: time
46 !!$ REAL(KIND=8), INTENT(IN) :: dt
47 !!$ INTEGER, DIMENSION(:), INTENT(IN) :: list_mode
48 !!$ REAL(KIND=8), DIMENSION(:,:,:), INTENT(OUT):: un_m1, un
49 !!$ REAL(KIND=8), DIMENSION(:,:,:), INTENT(OUT):: pn_m1, pn, phin_m1, phin
50 !!$ INTEGER :: mode, i, j
51 !!$ REAL(KIND=8), DIMENSION(mesh_c%np) :: pn_m2
52 !!$
53 !!$ time = 0.d0
54 !!$ DO i= 1, SIZE(list_mode)
55 !!$ mode = list_mode(i)
56 !!$ DO j = 1, 6
57 !!$ !===velocity
58 !!$ un_m1(:,j,i) = vv_exact(j,mesh_f%rr,mode,time-dt)
59 !!$ un (:,j,i) = vv_exact(j,mesh_f%rr,mode,time)
60 !!$ END DO
61 !!$ DO j = 1, 2
62 !!$ !===pressure
63 !!$ pn_m2(:) = pp_exact(j,mesh_c%rr,mode,time-2*dt)
64 !!$ pn_m1 (:,j,i) = pp_exact(j,mesh_c%rr,mode,time-dt)
65 !!$ pn (:,j,i) = pp_exact(j,mesh_c%rr,mode,time)
66 !!$ phin_m1(:,j,i) = pn_m1(:,j,i) - pn_m2(:)
67 !!$ phin (:,j,i) = Pn (:,j,i) - pn_m1(:,j,i)
68 !!$ ENDDO
69 !!$ ENDDO
70 !!$ END SUBROUTINE init_velocity_pressure
71 
72 !!$ !===Initialize temperature
73 !!$ SUBROUTINE init_temperature(mesh, time, dt, list_mode, tempn_m1, tempn)
74 !!$ IMPLICIT NONE
75 !!$ TYPE(mesh_type) :: mesh
76 !!$ REAL(KIND=8), INTENT(OUT):: time
77 !!$ REAL(KIND=8), INTENT(IN) :: dt
78 !!$ INTEGER, DIMENSION(:), INTENT(IN) :: list_mode
79 !!$ REAL(KIND=8), DIMENSION(:,:,:), INTENT(OUT):: tempn_m1, tempn
80 !!$ INTEGER :: mode, i, j
81 !!$
82 !!$ time = 0.d0
83 !!$ DO i= 1, SIZE(list_mode)
84 !!$ mode = list_mode(i)
85 !!$ DO j = 1, 2
86 !!$ tempn_m1(:,j,i) = temperature_exact(j, mesh%rr, mode, time-dt)
87 !!$ tempn (:,j,i) = temperature_exact(j, mesh%rr, mode, time)
88 !!$ ENDDO
89 !!$ ENDDO
90 !!$ END SUBROUTINE init_temperature
91 
92 !!$ !===Initialize level_set
93 !!$ SUBROUTINE init_level_set(vv_mesh, time, &
94 !!$ dt, list_mode, level_set_m1, level_set)
95 !!$ IMPLICIT NONE
96 !!$ TYPE(mesh_type) :: vv_mesh
97 !!$ REAL(KIND=8), INTENT(OUT):: time
98 !!$ REAL(KIND=8), INTENT(IN) :: dt
99 !!$ INTEGER, DIMENSION(:), INTENT(IN) :: list_mode
100 !!$ REAL(KIND=8), DIMENSION(:,:,:,:), INTENT(OUT):: level_set, level_set_m1
101 !!$ INTEGER :: mode, i, j, n
102 !!$
103 !!$ time = 0.d0
104 !!$ DO i= 1, SIZE(list_mode)
105 !!$ mode = list_mode(i)
106 !!$ DO j = 1, 2
107 !!$ !===level_set
108 !!$ DO n = 1, inputs%nb_fluid -1
109 !!$ level_set_m1(n,:,j,i) = level_set_exact(n,j,vv_mesh%rr,mode,time-dt)
110 !!$ level_set (n,:,j,i) = level_set_exact(n,j,vv_mesh%rr,mode,time)
111 !!$ END DO
112 !!$ END DO
113 !!$ END DO
114 !!$
115 !!$ END SUBROUTINE init_level_set
116 
117 !!$ !===Source in momemtum equation. Always called.
118 !!$ FUNCTION source_in_NS_momentum(TYPE, rr, mode, i, time, Re, ty, opt_density, opt_tempn) RESULT(vv)
119 !!$ IMPLICIT NONE
120 !!$ INTEGER , INTENT(IN) :: TYPE
121 !!$ REAL(KIND=8), DIMENSION(:,:), INTENT(IN) :: rr
122 !!$ INTEGER , INTENT(IN) :: mode, i
123 !!$ REAL(KIND=8), INTENT(IN) :: time
124 !!$ REAL(KIND=8), INTENT(IN) :: Re
125 !!$ CHARACTER(LEN=2), INTENT(IN) :: ty
126 !!$ REAL(KIND=8), DIMENSION(:,:,:), OPTIONAL, INTENT(IN) :: opt_density
127 !!$ REAL(KIND=8), DIMENSION(:,:,:), OPTIONAL, INTENT(IN) :: opt_tempn
128 !!$ REAL(KIND=8), DIMENSION(SIZE(rr,2)) :: vv
129 !!$
130 !!$ vv = 0.d0
131 !!$ CALL error_petsc('source_in_NS_momentum: should not be called for this test')
132 !!$ RETURN
133 !!$ END FUNCTION source_in_NS_momentum
134 
135 !!$ !===Extra source in temperature equation. Always called.
136 !!$ FUNCTION source_in_temperature(TYPE, rr, m, t)RESULT(vv)
137 !!$ IMPLICIT NONE
138 !!$ INTEGER , INTENT(IN) :: TYPE
139 !!$ REAL(KIND=8), DIMENSION(:,:), INTENT(IN) :: rr
140 !!$ INTEGER , INTENT(IN) :: m
141 !!$ REAL(KIND=8), INTENT(IN) :: t
142 !!$ REAL(KIND=8), DIMENSION(SIZE(rr,2)) :: vv
143 !!$
144 !!$ vv = 0.d0
145 !!$ CALL error_petsc('source_in_temperature: should not be called for this test')
146 !!$ RETURN
147 !!$ END FUNCTION source_in_temperature
148 
149 !!$ !===Extra source in level set equation. Always called.
150 !!$ FUNCTION source_in_level_set(interface_nb,TYPE, rr, m, t)RESULT(vv)
151 !!$ IMPLICIT NONE
152 !!$ INTEGER , INTENT(IN) :: TYPE
153 !!$ REAL(KIND=8), DIMENSION(:,:), INTENT(IN) :: rr
154 !!$ INTEGER , INTENT(IN) :: m, interface_nb
155 !!$ REAL(KIND=8), INTENT(IN) :: t
156 !!$ REAL(KIND=8), DIMENSION(SIZE(rr,2)) :: vv
157 !!$
158 !!$ vv=0.d0
159 !!$ CALL error_petsc('sourece_in_temperature: should not be called for this test')
160 !!$ END FUNCTION source_in_level_set
161 
162 !!$ !===Velocity for boundary conditions in Navier-Stokes.
163 !!$ !===Can be used also to initialize velocity in: init_velocity_pressure_temperature
164 !!$ FUNCTION vv_exact(TYPE,rr,m,t) RESULT(vv)
165 !!$ IMPLICIT NONE
166 !!$ INTEGER , INTENT(IN) :: TYPE
167 !!$ REAL(KIND=8), DIMENSION(:,:), INTENT(IN) :: rr
168 !!$ INTEGER, INTENT(IN) :: m
169 !!$ REAL(KIND=8), INTENT(IN) :: t
170 !!$ REAL(KIND=8), DIMENSION(SIZE(rr,2)) :: vv
171 !!$
172 !!$ vv(:) = 0.d0
173 !!$ CALL error_petsc('vv_exact: should not be called for this test')
174 !!$ RETURN
175 !!$ END FUNCTION vv_exact
176 
177 !!$ !===Solid velocity imposed when using penalty technique
178 !!$ !===Defined in Fourier space on mode 0 only.
179 !!$ FUNCTION imposed_velocity_by_penalty(rr,t) RESULT(vv)
180 !!$ IMPLICIT NONE
181 !!$ REAL(KIND=8), DIMENSION(:,:), INTENT(IN) :: rr
182 !!$ REAL(KIND=8), INTENT(IN) :: t
183 !!$ REAL(KIND=8), DIMENSION(SIZE(rr,2),6) :: vv
184 !!$
185 !!$ vv=0.d0
186 !!$ RETURN
187 !!$ END FUNCTION imposed_velocity_by_penalty
188 
189 !!$ !===Pressure for boundary conditions in Navier-Stokes.
190 !!$ !===Can be used also to initialize pressure in the subroutine init_velocity_pressure.
191 !!$ !===Use this routine for outflow BCs only.
192 !!$ !===CAUTION: Do not enfore BCs on pressure where normal component
193 !!$ ! of velocity is prescribed.
194 !!$ FUNCTION pp_exact(TYPE,rr,m,t) RESULT (vv)
195 !!$ IMPLICIT NONE
196 !!$ INTEGER , INTENT(IN) :: TYPE
197 !!$ REAL(KIND=8), DIMENSION(:,:), INTENT(IN) :: rr
198 !!$ INTEGER , INTENT(IN) :: m
199 !!$ REAL(KIND=8), INTENT(IN) :: t
200 !!$ REAL(KIND=8), DIMENSION(SIZE(rr,2)) :: vv
201 !!$
202 !!$ vv=0.d0
203 !!$ CALL error_petsc('pp_exact: should not be called for this test')
204 !!$ RETURN
205 !!$ END FUNCTION pp_exact
206 
207 !!$ !===Temperature for boundary conditions in temperature equation.
208 !!$ FUNCTION temperature_exact(TYPE,rr,m,t) RESULT (vv)
209 !!$ IMPLICIT NONE
210 !!$ INTEGER , INTENT(IN) :: TYPE
211 !!$ REAL(KIND=8), DIMENSION(:,:), INTENT(IN) :: rr
212 !!$ INTEGER , INTENT(IN) :: m
213 !!$ REAL(KIND=8), INTENT(IN) :: t
214 !!$ REAL(KIND=8), DIMENSION(SIZE(rr,2)) :: vv
215 !!$
216 !!$ vv = 0.d0
217 !!$ CALL error_petsc('temperature_exact: should not be called for this test')
218 !!$ RETURN
219 !!$ END FUNCTION temperature_exact
220 
221 !!$ !===Can be used to initialize level set in the subroutine init_level_set.
222 !!$ FUNCTION level_set_exact(interface_nb,TYPE,rr,m,t) RESULT (vv)
223 !!$ IMPLICIT NONE
224 !!$ INTEGER , INTENT(IN) :: TYPE
225 !!$ REAL(KIND=8), DIMENSION(:,:), INTENT(IN) :: rr
226 !!$ INTEGER , INTENT(IN) :: m, interface_nb
227 !!$ REAL(KIND=8), INTENT(IN) :: t
228 !!$ REAL(KIND=8), DIMENSION(SIZE(rr,2)) :: vv
229 !!$
230 !!$ vv = 0.d0
231 !!$ CALL error_petsc('level_set_exact: should not be called for this test')
232 !!$ RETURN
233 !!$
234 !!$ END FUNCTION level_set_exact
235 
236 !!$ !===Penalty coefficient (if needed)
237 !!$ !===This coefficient is equal to zero in subdomain
238 !!$ !===where penalty is applied (penalty is zero in solid)
239 !!$ FUNCTION penal_in_real_space(mesh,rr_gauss,angles,nb_angles,nb,ne,time) RESULT(vv)
240 !!$ IMPLICIT NONE
241 !!$ TYPE(mesh_type) :: mesh
242 !!$ REAL(KIND=8), DIMENSION(:,:), INTENT(IN) :: rr_gauss
243 !!$ REAL(KIND=8), DIMENSION(:), INTENT(IN) :: angles
244 !!$ INTEGER, INTENT(IN) :: nb_angles
245 !!$ INTEGER, INTENT(IN) :: nb, ne
246 !!$ REAL(KIND=8), INTENT(IN) :: time
247 !!$ REAL(KIND=8), DIMENSION(nb_angles,ne-nb+1) :: vv
248 !!$
249 !!$ vv = 1.d0
250 !!$ CALL error_petsc('penal_in_real_space: should not be called for this test')
251 !!$ RETURN
252 !!$ END FUNCTION penal_in_real_space
253 
254 !!$ !===Extension of the velocity field in the solid.
255 !!$ !===Used when temperature or Maxwell equations are solved.
256 !!$ !===It extends the velocity field on the Navier-Stokes domain to a
257 !!$ !===velocity field on the temperature and the Maxwell domain.
258 !!$ !===It is also used if problem type=mxw and restart velocity
259 !!$ !===is set to true in data (type problem denoted mxx in the code).
260 !!$ FUNCTION extension_velocity(TYPE, H_mesh, mode, t, n_start) RESULT(vv)
261 !!$ IMPLICIT NONE
262 !!$ TYPE(mesh_type), INTENT(IN) :: H_mesh
263 !!$ INTEGER , INTENT(IN) :: TYPE, n_start
264 !!$ INTEGER, INTENT(IN) :: mode
265 !!$ REAL(KIND=8), INTENT(IN) :: t
266 !!$ REAL(KIND=8), DIMENSION(H_Mesh%np) :: vv
267 !!$
268 !!$ vv = 0.d0
269 !!$ RETURN
270 !!$
271 !!$ END FUNCTION extension_velocity
272 
273  !===============================================================================
274  ! Boundary conditions for Maxwell
275  !===============================================================================
276  !===Velocity used in the induction equation.
277  !===Used only if problem type is mxw and restart velocity is false
278  FUNCTION vexact(m, H_mesh) RESULT(vv) !Set uniquement a l'induction
279  IMPLICIT NONE
280  TYPE(mesh_type), INTENT(IN) :: H_mesh
281  INTEGER, INTENT(IN) :: m
282  REAL(KIND=8), DIMENSION(H_mesh%np,6) :: vv
283  INTEGER :: n
284 
285  vv = 0.d0
286  RETURN
287 
288  !===Dummies variables to avoid warning
289  n=h_mesh%np; n=m
290  !===Dummies variables to avoid warning
291  END FUNCTION vexact
292 
293 !!$ !===Magnetic field and magnetic induction for quasi-static approximation
294 !!$ !===if needed
295 !!$ FUNCTION H_B_quasi_static(char_h_b, rr, m) RESULT(vv)
296 !!$ IMPLICIT NONE
297 !!$ CHARACTER(LEN=1), INTENT(IN) :: char_h_b
298 !!$ REAL(KIND=8), DIMENSION(:,:), INTENT(IN) :: rr
299 !!$ INTEGER, INTENT(IN) :: m
300 !!$ REAL(KIND=8), DIMENSION(SIZE(rr,2),6) :: vv
301 !!$
302 !!$ vv = 0.d0
303 !!$ RETURN
304 !!$ END FUNCTION H_B_quasi_static
305 
306  !===Magnetic field for boundary conditions in the Maxwell equations.
307  FUNCTION hexact(H_mesh,TYPE, rr, m, mu_H_field, t) RESULT(vv)
308  IMPLICIT NONE
309  TYPE(mesh_type), INTENT(IN) :: H_mesh
310  INTEGER , INTENT(IN) :: TYPE
311  REAL(KIND=8), DIMENSION(:,:), INTENT(IN) :: rr
312  INTEGER , INTENT(IN) :: m
313  REAL(KIND=8), INTENT(IN) :: t
314  REAL(KIND=8), DIMENSION(:), INTENT(IN) :: mu_H_field
315  REAL(KIND=8), DIMENSION(SIZE(rr,2)) :: vv
316  INTEGER, DIMENSION(SIZE(rr,2)) :: id
317  INTEGER :: n, mm
318  REAL(KIND=8) :: r
319 
320  IF (m/=0) THEN
321  vv(:) = 0.d0
322  RETURN
323  END IF
324  if (SIZE(rr,2)== h_mesh%np) THEN
325  DO mm = 1, h_mesh%me !id is used to determine on which side of the interface we are
326  id(h_mesh%jj(:,mm)) = h_mesh%i_d(mm) !used for initialization
327  END DO
328  ELSE
329  IF (rr(1,1)<1) THEN !used for boundary condition
330  id = 1
331  ELSE
332  id = 2
333  END IF
334  END IF
335  IF (type==1) THEN
336  DO n = 1, SIZE(rr,2)
337  IF (id(n)==1) THEN
338  vv(n) = rr(1,n)*rr(2,n)
339  ELSE
340  vv(n) = (3.d0*rr(1,n)+2.d0)*rr(2,n)**3*rr(1,n)/&
341  (3.d0*rr(2,n)**2*rr(1,n) + 2.d0*rr(2,n)**2 + 2.d0*lambda_mu_t18 )
342  END IF
343  END DO
344  ELSE IF (type==5) THEN
345  vv = - 0.5 * ( rr(2,:)**2*(3*rr(1,:)+2) )/( 1.d0 + rr(1,:) )
346  ELSE
347  vv = 0.d0
348  END IF
349  RETURN
350 
351  !===Dummies variables to avoid warning
352  r=mu_h_field(1); r=t
353  !===Dummies variables to avoid warning
354  END FUNCTION hexact
355 
356  !===Scalar potential for boundary conditions in the Maxwell equations.
357  FUNCTION phiexact(TYPE, rr, m, mu_phi,t) RESULT(vv)
358  IMPLICIT NONE
359  INTEGER , INTENT(IN) :: TYPE
360  REAL(KIND=8), DIMENSION(:,:), INTENT(IN) :: rr
361  INTEGER , INTENT(IN) :: m
362  REAL(KIND=8), INTENT(IN) :: mu_phi, t
363  REAL(KIND=8), DIMENSION(SIZE(rr,2)) :: vv
364  REAL(KIND=8) :: r
365  INTEGER :: n
366 
367  vv=0.d0
368  CALL error_petsc('Phiexact: should not be called for this test')
369  RETURN
370 
371  !===Dummies variables to avoid warning
372  n=type; n=SIZE(rr,1); n=m; r=mu_phi; r=t
373  !===Dummies variables to avoid warning
374  END FUNCTION phiexact
375 
376  !===Current in Ohm's law. Curl(H) = sigma(E + uxB) + current
377  FUNCTION jexact_gauss(TYPE, rr, m, mu_phi, sigma, mu_H, t, mesh_id, opt_B_ext) RESULT(vv)
378  IMPLICIT NONE
379  INTEGER , INTENT(IN) :: TYPE
380  REAL(KIND=8), DIMENSION(:), INTENT(IN) :: rr
381  INTEGER , INTENT(IN) :: m
382  REAL(KIND=8), INTENT(IN) :: mu_phi, sigma, mu_H, t
383  INTEGER , INTENT(IN) :: mesh_id
384  REAL(KIND=8), DIMENSION(6), OPTIONAL,INTENT(IN) :: opt_B_ext
385  REAL(KIND=8) :: vv
386  REAL(KIND=8) :: r
387 
388  IF (m/=0) THEN
389  vv = 0.d0
390  RETURN
391  END IF
392 
393  !J_theta
394  IF (type==3) THEN
395  IF (mesh_id==1) THEN !Determine on which side of the interface we are
396  vv = rr(1) - (1.d0/2.d0)*rr(2)**2*(3*rr(1)+2)/(1+rr(1))**2 &
397  + (3.d0/2.d0)*rr(2)**2/(1+rr(1))
398  ELSE
399  vv = rr(1)*rr(2)**2*(3*rr(1)+2)*(3*rr(2)**2*rr(1)+2*rr(2)**2+6*lambda_mu_t18) &
400  /(3*rr(2)**2*rr(1)+2*rr(2)**2+2*lambda_mu_t18)**2 &
401  + (3.d0/2.d0)*rr(2)**2/(1+rr(1)) &
402  - (1.d0/2.d0)*rr(2)**2*(3*rr(1)+2)/(1+rr(1))**2
403  ENDIF
404  ELSE
405  vv = 0.d0
406  END IF
407  RETURN
408 
409  !===Dummies variables to avoid warning
410  r=mu_phi; r=sigma; r=mu_h; r=t
411  IF (PRESENT(opt_b_ext)) r=opt_b_ext(1)
412  !===Dummies variables to avoid warning
413  END FUNCTION jexact_gauss
414 
415  !===Electric field for Neumann BC (cf. doc)
416  FUNCTION eexact_gauss(TYPE, rr, m, mu_phi, sigma, mu_H, t) RESULT(vv)
417  IMPLICIT NONE
418  INTEGER, INTENT(IN) :: TYPE
419  REAL(KIND=8), DIMENSION(:), INTENT(IN) :: rr
420  INTEGER, INTENT(IN) :: m
421  REAL(KIND=8), INTENT(IN) :: mu_phi, sigma, mu_H, t
422  REAL(KIND=8) :: vv
423  REAL(KIND=8) :: r
424  INTEGER :: n
425 
426  vv = 0.d0
427  CALL error_petsc('Eexact: should not be called for this test')
428 
429  !===Dummies variables to avoid warning
430  r=rr(1); r=mu_phi; r=sigma; r=mu_h; r=t; n=type; n=m
431  !===Dummies variables to avoid warning
432  END FUNCTION eexact_gauss
433 
434  !===Initialization of magnetic field and scalar potential (if present)
435  SUBROUTINE init_maxwell(H_mesh, phi_mesh, time, dt, mu_H_field, mu_phi, &
436  list_mode, hn1, hn, phin1, phin)
437  IMPLICIT NONE
438  TYPE(mesh_type) :: H_mesh, phi_mesh
439  REAL(KIND=8), INTENT(OUT):: time
440  REAL(KIND=8), INTENT(IN) :: dt
441  REAL(KIND=8), DIMENSION(:), INTENT(IN) :: mu_H_field
442  REAL(KIND=8), INTENT(IN) :: mu_phi
443  INTEGER, DIMENSION(:), INTENT(IN) :: list_mode
444  REAL(KIND=8), DIMENSION(:,:,:), INTENT(OUT):: Hn, Hn1
445  REAL(KIND=8), DIMENSION(:,:,:), INTENT(OUT):: phin, phin1
446  INTEGER :: i, k
447 
448  time = -dt
449  DO k=1,6
450  DO i=1, SIZE(list_mode)
451  hn1(:,k,i) = hexact(h_mesh,k, h_mesh%rr, list_mode(i), mu_h_field, time)
452  IF (inputs%nb_dom_phi>0) THEN
453  IF (k<3) THEN
454  phin1(:,k,i) = phiexact(k, phi_mesh%rr, list_mode(i) , mu_phi, time)
455  ENDIF
456  END IF
457  ENDDO
458  ENDDO
459 
460  time = time + dt
461  DO k=1,6
462  DO i=1, SIZE(list_mode)
463  hn(:,k,i) = hexact(h_mesh,k, h_mesh%rr, list_mode(i), mu_h_field, time)
464  IF (inputs%nb_dom_phi>0) THEN
465  IF (k<3) THEN
466  phin(:,k,i) = phiexact(k, phi_mesh%rr, list_mode(i), mu_phi, time)
467  ENDIF
468  END IF
469  ENDDO
470  ENDDO
471  END SUBROUTINE init_maxwell
472 
473  !===Analytical permeability (if needed)
474  !===This function is not needed unless the flag
475  !=== ===Use FEM Interpolation for magnetic permeability (true/false)
476  !===is activated and set to .FALSE. in the data data file. Default is .TRUE.
477  FUNCTION mu_bar_in_fourier_space(H_mesh,nb,ne,pts,pts_ids) RESULT(vv)
478  IMPLICIT NONE
479  TYPE(mesh_type), INTENT(IN) :: H_mesh
480  REAL(KIND=8), DIMENSION(ne-nb+1) :: vv
481  INTEGER, INTENT(IN) :: nb, ne
482  REAL(KIND=8),DIMENSION(2,ne-nb+1),OPTIONAL :: pts
483  INTEGER, DIMENSION(ne-nb+1), OPTIONAL :: pts_ids
484 
485  IF( PRESENT(pts) .AND. PRESENT(pts_ids) ) THEN
486  vv=mu_bar_in_fourier_space_anal_t18(h_mesh,nb,ne,pts,pts_ids)
487  ELSE
488  vv=mu_bar_in_fourier_space_anal_t18(h_mesh,nb,ne,pts)
489  END IF
490  RETURN
491  END FUNCTION mu_bar_in_fourier_space
492 
493  !===Analytical mu_in_fourier_space (if needed)
494  !===This function is not needed unless the flag
495  !=== ===Use FEM Interpolation for magnetic permeability (true/false)
496  !===is activated and set to .FALSE. in the data data file. Default is .TRUE.
497  FUNCTION grad_mu_bar_in_fourier_space(pt,pt_id) RESULT(vv)
498  IMPLICIT NONE
499  REAL(KIND=8),DIMENSION(2), INTENT(in):: pt
500  INTEGER,DIMENSION(1), INTENT(in) :: pt_id
501  REAL(KIND=8),DIMENSION(2) :: vv
502 
504  RETURN
505  END FUNCTION grad_mu_bar_in_fourier_space
506 
507 !!$ !===Analytical permeability, mu in real space (if needed)
508 !!$ FUNCTION mu_in_real_space(H_mesh,angles,nb_angles,nb,ne,time) RESULT(vv)
509 !!$ IMPLICIT NONE
510 !!$ TYPE(mesh_type), INTENT(IN) :: H_mesh
511 !!$ REAL(KIND=8), DIMENSION(:), INTENT(IN) :: angles
512 !!$ INTEGER, INTENT(IN) :: nb_angles
513 !!$ INTEGER, INTENT(IN) :: nb, ne
514 !!$ REAL(KIND=8), INTENT(IN) :: time
515 !!$ REAL(KIND=8), DIMENSION(nb_angles,ne-nb+1) :: vv
516 !!$
517 !!$ vv = 1.d0
518 !!$ CALL error_petsc('mu_in_real_space: should not be called for this test')
519 !!$ RETURN
520 !!$ END FUNCTION mu_in_real_space
521 
522 END MODULE boundary_test_18
real(kind=8) function, public jexact_gauss(TYPE, rr, m, mu_phi, sigma, mu_H, t, mesh_id, opt_B_ext)
real(kind=8) function, dimension(2), public grad_mu_bar_in_fourier_space(pt, pt_id)
subroutine error_petsc(string)
Definition: my_util.f90:16
type(my_data), public inputs
real(kind=8) function, dimension(size(rr, 2)), public hexact(H_mesh, TYPE, rr, m, mu_H_field, t)
real(kind=8) function, dimension(size(rr, 2)), public phiexact(TYPE, rr, m, mu_phi, t)
real(kind=8), parameter, public lambda_mu_t18
Definition: test_18.f90:4
real(kind=8) function, dimension(2) grad_mu_bar_in_fourier_space_anal_t18(pt, pt_id)
Definition: test_18.f90:48
real(kind=8) function, public eexact_gauss(TYPE, rr, m, mu_phi, sigma, mu_H, t)
subroutine, public init_maxwell(H_mesh, phi_mesh, time, dt, mu_H_field, mu_phi, list_mode, Hn1, Hn, phin1, phin)
real(kind=8) function, dimension(h_mesh%np, 6), public vexact(m, H_mesh)
real(kind=8) function, dimension(ne-nb+1) mu_bar_in_fourier_space_anal_t18(H_mesh, nb, ne, pts, pts_ids)
Definition: test_18.f90:7
real(kind=8) function, dimension(ne-nb+1), public mu_bar_in_fourier_space(H_mesh, nb, ne, pts, pts_ids)